Language Models Resist Alignment: Evidence From Data Compression

On behalf of all authors: **Yaodong Yang**Peking University/BAAI

Post-Training/Alignment

- ➤ Pre-training Stage: uses massive amounts of text data to equip the model with general capabilities by learning to predict the next token.
- ➤ Post-training (Alignment) Stage: use instruction fine-tuning and human feedback alignment to elicit/guide the capabilities of the pre-trained model.
- ➤ Common practice: 99% pre-training data + 1% post-training data

Research Motivation

- Safe alignment is easy to be compromised after only minimal fine-tuning.
- To preserve its "own" preferences, language models may exhibit 'deceptive alignment' during training.
- An AI model doesn't just have trouble doing what we want (hard to align), but it can also pretend it's doing the right thing even when it's not (deception).

Helpful, Harmless and Honest Well-Aligned Agents

Learning to Hack and Deceive Strategic Agents

Post-training Tendency

Garbage Out Collapsed Agents

Alignment faking in large language models; AI models trained on AI-generated data descend into gibberish

Central Question

Can large models be aligned? What leads to alignment failures?

Answer in this Paper: Language Models Resist Alignment

Formulation

> Pre-training: an LLM acquires foundational language comprehension and reasoning abilities by learning to predict next token.

$$\mathcal{L}_{\text{PT}}(\boldsymbol{\theta}; \mathcal{D}_{\text{PT}}) = -\mathbb{E}_{(\boldsymbol{x}, x_N) \sim \mathcal{D}_{\text{PT}}} \left[\log p_{\boldsymbol{\theta}} \left(x_N | \boldsymbol{x} \right) \right]$$

- \triangleright where $x = (x_0, ... x_{N-1})$, such that $(x_0, ... x_{N-1})$ forms a prefix in some piece of pretraining text.
- ➤ Post-training: aligning the model's output distribution towards human preference distribution.

$$\mathcal{L}_{ ext{SFT}}(\boldsymbol{\theta}; \mathcal{D}_{ ext{SFT}}) = -\mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim \mathcal{D}_{ ext{SFT}}} \left[\log p_{\boldsymbol{\theta}} \left(\boldsymbol{y} \middle| \boldsymbol{x} \right) \right]$$

> where *x* stands for instructions in the SFT data and *y* stands for the preference response.

- > Compression is intelligence.
 - \triangleright We use the **compression rate** $\gamma_{p_{\theta}}$ to investigate the dynamics of alignment process.
 - \triangleright Minimizing the training loss is equivalent to minimizing $\gamma_{p_{\theta}}$ of different datasets.

Take-way: Language Models Resist Alignment

$$|\mathcal{D}_1| \cdot \Delta \gamma_{p_{\theta}}^{\mathcal{D}_1/\mathcal{D}} = \Theta(|\mathcal{D}_2| \cdot \Delta \gamma_{p_{\theta}}^{\mathcal{D}_2/\mathcal{D}})$$

Language models, even fine-tuned with alignment dataset, possess an **inverse** relationship between compression rate changes $\Delta \gamma_{p_{\theta}}^{\mathcal{D}_i/\mathcal{D}}$ and dataset volume $|\mathcal{D}_i|$.

Analogy to the Hooke's Law

The elastic constant $k \rightarrow$ the dataset size $|\mathcal{D}|$

The **elongation** $\Delta l_i \rightarrow$ the change in the KL divergence $\Delta D_{KL}(\mathcal{P}_{p_{\theta}}||\mathcal{P}_{D_i})$

Empirical Findings

Finding 1: Resistance to Alignment:

• LLM find it easier to revert to their original un-aligned state (*inverse alignment*) than to achieve aligned status (*forward alignment*);

Finding 2: The Rebound Effect:

- The stronger the alignment, the easier it "bounces back."
- The more a model is aligned, *the faster and more dramatically* its performance collapses when fine-tuned with even a small amount of opposing data.

Finding 3: The elastic force strengthens with the model scale

- The stronger the LLMs, the bigger its elasticity.
- Larger models and more pre-training data lead to a more pronounced and rapid rebound, reverting to the based un-aligned more easily.

Future Direction > From Hooke's Law f = -kx to the Elasticity of Large Models

Q1: How strong is the alignment resistance for LLMs?

- Current evaluations focus primarily on forward alignment, but overlook inverse alignment, how easily a model inverses from 90% aligned back to 60% aligned.
- ➤ High susceptibility to inverse alignment reveals a model's fragility and may expose it to jailbreaks and red-teaming attacks.

Q2: How can we turn resistance into an "useful" alignment force?

- ➤ How to leverage model resistance to be used for positive force for alignment?
- How to leverage elasticity to facilitate efficient "unlearning" or "un-tunable" LLMs?

Thanks!