=4 _ University of

\&/Southampton

CoG 2022 Tutorial

SOLVING TWO-PLAYER ZERO-SUM GAMES
THROUGH REINFORCEMENT LEARNING

Dr. Yaodong Yang (Peking University)

Le Cong Dinh (University of Southampton)
08/2022

Intelligence is learning from mistakes!

... 1T a machine I1s expected to be Infallible, it cannot also be Intelligent.
There are several mathematical theorems which say almost exactly that.
But these theorems say nothing about how much intelligence may be
displayed it a machine makes no pretence at infallibility...”

— Alan Turing, 1947/

Multi-Agent Intelligence: learning from mistakes from multiple agents’ interactions

Normal machine learning problems: Multi-agent Learning problems:

&‘““' =
TR

W
\\\\\\\)‘

¢
W

= 77 ;V‘ ’//w .
_:z‘:é;-:{i—;;;;\(;*» = = / 7 7 7 7 0 .
N % 0. 0.25 0.5 0.75 1.

¥
Scissor

agents learn to reach some

IVl =0 dynamic equilibrium

Loss landscape changes with opponents’ actions

Loss landscape keeps fixed

Multi-Agent Reinforcement Learning

» Modelled by a Stochastic Game (&, /!

m & denotes the state space,

» o is the joint-action space &' X

S g

X d

RU(s,a',a™) is the reward function for the i-th agent,

,n}, gg{l,...,n}

i

T XA XS — [0,1] is the transition function based on the joint action,

m 9P, is the distribution of the initial state, y is a discount factor:

m Special case: n =1 — single-agent MDP | &' | = 1 — normal-form game

s Dec-POMDP: assume state is not directly observed, but agents have same reward function.

» Each agent tries to maximise its expected long-term reward:

O .(s,a) = R(s,a) + YE

vop | Vi

| State s

A population
of agents

Environment

X

Two-player
Markov game

State s’

o2 1@, isalal.

.................
.....................

.....................
..................
....................
.....................

Multi-Agent Reinforcement Learning

» Value-based method:

m [he sense of optimality changes, now it depends on other agents !
Qi,t+1 (Sk’ ”t) = Qi,t (St’ ”t) T O‘[Ri,t+1) evali{Q-,t(StH» ')} = Qi,t (St’ ”t)]
7. (s, -) = solve;{ Q. (s, -)}

+ Fully-cooperative game: agents share the same reward function

eval;{ Q. (s,)} = max Q; (s, a)

SOlvei{ Q. (s, -)} = arg ma (s Q; (s a;; a—i))

a; a

fully fully
cooperative competitive

+ Fully-competitive game: sum of agents' reward Is zero

eval,{ Q (s,.1,)} = maxminE_|Q, (s,a;a_)|

ro g

solve,{ Q. (s, -)} = argmaxminE_|Q; (s, a; a_))]

o a

m Assuming agents share the either the same or completely opposite interest is a strong assumption.

Nash Equilibrium

~ Definition 2.2.2 (Nash Equilibrium) Let y; € Ag, for all i € [n].
Nash Equilibrium if for every i € [n]:

E
Sir~pL
sj~p; Vye[n]\{i}

E

w;(81.,....8
sj~p; Vje[n] [wi(s1;--,8n)]

[ui(81,...,8n0)] 2

Then (/1’17,‘1'2,"')/1%) 1S @

vﬂ*; € Ag,

» Mixed strategy Nash equilibrium always exists in finite player finite action games.

» For continuous utility games, the strategy set needs to be compact

» Note that y; € A can be replaced by a € §; because deviation is at most a pure strategy !

 In Markov game, the solution concept is Markov Perfect Equilibrium.

Definition 3 (Behavioral Strategy). A behavioral strategy of an agent i is S = A(AY), ie,
Vs € S, 7*(s) is a probability distribution on A".

Definition 5 (Markov Perfect Equilibrium (MPE)). A behavioral strategy profile m is called a
Markov Perfect Equilibrium if

Vs € S,i € [n], V&' € AS,, V™" "(s) > VT '(s).

State s

|
| ‘%
|
|
|
|

| r'(s,a' a%), ré(s,a

Two-player
Markov game

State s’

.....................
..................
...................

Nash Equilibrium to MARL

» Value-based method:

7; (s, -) = solve; {Q,J (St’ :) }

Qi,t+1 (Ska ﬂ‘.t) = Qi,t (St’ ”t) T a _Ri,t+1 + 7 - eval; {Qt (St+19 :) } = Qi,t (St’ ”t)_

m Nash-Q Learning [Hu. et al 2003] — Using Nash Equilibrium as the optima to guide agents’ policies

|. Solve the Nash Equilibrium for the current stage game
solve; { O -, (s,)} = Nash; {Q (5,)]
2. Improve the estimation of the Q-function by the Nash value function.

eval; {Q (s, -)} = Vi(s,Nash {Q (5.)})

m Nash-Q algorithm [Junling 2003] computes Nash for the normal-form game at each state

» Nash-Q operator ZN*'Q(s, a) = ES/[R(S, a) + yVhash (S’)] is a contraction mapping.

Complexity of Computing Nash Equilibrium in Normal-Form Games

» Solving Nash Equilibrium is very challenging! * More complexity results of solving Nash [Shoham
2007, sec 4][Conitzer 2002]

m [he solution concept of Nash comes from game theory

but it is not their main interest to find solutions. = [wo-player general-sum normal-form game:
o Compute NE — PPAD-Hard
m Complexity of solving two-player Nash is PPAD-Hard . Coirlnimboratne L 0

(intractable unless P=NP). o Check uniqueness of NE — NP-Hard

= How to scale up multi-agent solution is open-question. » Guaranteed payoff for one player — NP-Hard
o (Guaranteed sum of agents payoffs = NP-Hard

= Approximate solution is still under development. o Check action inclusion / exclusion in NE — NP-Hard

R, (al-, a_l-) > R, (al-’, a_l-) ot

e =.75 - 50 - .38 — .37 — .3393 [Tsaknakis 2008]

- o Check pure-strategy NE existence — PSPACE-Hard
'”ece” Y2 » Best response for arbitrary strategy — Not Turing-

m Stochastic game:

m Equilibrium selection is problematic, how to coordinate : .
: . computable, even can not be implemented by a Turing PC.
agents to agree on Nash during training is unknown. . , L

It holds for two-player symmetrical game with finite time

= Nash equilibrium assumes perfect rationality, but can be length.
unrealistic in the real world.

ttttttt

tttttt

Computing Nash Equilibrium in Stochastic Games

» Solving Nash Equilibrium in normal-form games is PPAD-hard; we expect solving

Nash in stochastic games can only be harder ! But it is not.

Theorem: Computing Markov Perfect Equilibrium in N-Player SGs is PPAD-complete.

Definition 3 (Behavioral Strategy). A behavioral strategy of an agent i is © : S — A(AY), i.e.,

Vs € S, w'(s) is a probability distribution on A". On the Complexity of Computing Markov Perfect
Equilibrium in General-Sum Stochastic Games

oy oqeq o] . Xiaotie Deng* Yuhao Li*
Definition 5 (MarkOV Perfect EqUIhbnum (MP E)). A behavioral strate gy pri Oﬁl e m is called a Center on Frontiers of Computing Studies Center on Frontiers of Computing Studies
oqe . . Peking University Peking University
Markov Perfect Equilibrium if riaotie@pku. edu. cn yuhaoli . cs@pku. edu. cn
. ~1 S 7!‘7; ST ¢ 7l ST ¢ David Henry Mguni Jun Wang Yaodong Yang
VS S S) (S [n]7 VT‘- S A At V (S) Z V (S) * Huawei R&D UK University College London King’s College London
davidmguni@hotmail.com jun.wang@cs.ucl.ac.uk yaodong.yang@outlook.com

* Meaning computing Nash in SGs is unlikely to be NP-hard unless NP£=coNP.
 PPAD problems can always have exp-time algorithms, can we have P-time solutions !

+ Short answer is we don’t know yet. Similar to we don’t know if P=NP. But highly likely NO.

Summary of Complexity Results

’J NEXPTIME-hard
-

PSAPCE-hard
NP-hard

PPAD-hard

" Figure 1.5: Landscape of different complexity classes. Relevant examples are: 1) solving
NE in two-player zero-sum game is P (Neumann, 1928). 2) solving NE in two-
player general-sum game is PPAD-hard (Daskalakis et al., 2009). solving NE
in three-player zero-sum game is also PPAD-hard (Daskalakis and Papadim-
itriou, 2005). 3) checking the uniqueness of NE is NP-hard (Conitzer and Sand-
holm, 2002). 4) checking whether pure-strategy NE exists in stochastic game
is PSPACE-hard (Conitzer and Sandholm, 2008). 5) solving Dec-POMDP is
NEXPTIME-hard (Bernstein et al., 2002).

https://arxiv.org/abs/ 2011.00583

https://arxiv.org/abs/2011.00583

MARL in Zero-Sum Games

fully fully
cooperative competitive

Great advantages have been made in 2019!

Jan 2016 Dec 2017 July 2018 Jan 2019 Apr 2019 July 2019 Sep 2019

e ———————————————————————
AlphaGO Series

AlphaStar (DeepMind) Pluribus Poker (FAIR)

L1

technique of single-agent F:_;E; et e e

decision-making Is mature

Capture-the-flag (DeepMind) Dota2 (OpenAl) Hide and Seek (OpenAl)

techniques of multi-agent decision-making is getting mature !

A General Solver to Two-Player Zero-Sum Games

Output: the reward (Rl, R

L)

Black-box multi-agent
game engine

Our algorithm:

output

Low-exploitability

strategy
W TT

Br' (n N = arg max Ea,,\,ﬂi,a_i,\,,,_i [Ri(ai, Cl_i)]

>
Exploitability (= ZR’ (Br'(z™%),x~") — Ri(n)
=1

Two Mainstreams of Multi-Agent Learning algorithms

Population-based methods:

e - Fictitious play, double oracle, PSRO series, ...

- Regard the opponents fixed and seek for best
o responses.

- Easily and nicely integrated with RL methods (e.g,
- NN O)

- Work effectively in potential and zero-sum games,
- but limited In genera-sum games.

~ - Average policy have convergence guarantee but
oenerally no last-iteration convergence

Le Cong Dinh

University of Southampton

IK. ﬁ J

Summary of Online Double Oracle Results

» The best achievable regret in bandit setting is @(\/T\A |), see [Audibert, Bubeck 2010, JMLR]

Table 1: Properties of existing solvers on two-player zero-sum games A, x,,. “:DO and XDO in
the worst case has to solve all sub-games till reaching the full game, so the time complexity is one
order magnitude larger than LP (van den Brand, 2020) and CFR (Zinkevich et al., 2007). T: Since
PSRO uses approximate best-response, the total time complexity is unknown. ¥ Note that the regret
bound of ODO can not be directly compared with the time complexity of DO, which are two different
notions.
Rational Allow Convercence
Method (No- c-Best S Regret Bound (O) Large Games
Rate (O)
regret) Response

Linear Programming O (n exp(—1'/ 77,2'38))

(Generalised) Fictitious Play v O(T-1/(ntm=2))

Multiplicative Weight Up- Y O (\/log) /T)

date

Double Oracle @(n exp(—1'/ 77,3'38))* v

Counterfactual Regret Mini-

v O(A|I|\/T|A v

mization (Al A

Extensive-Form Double Y) (AIT|\/AP2 /T)* v

Oracle

Policy Space Response Oracle v v

Online Double Oracle v v O(\/ klog(k)/ T)]t v

Extensive-Form On-

A|SH|\/k|AX|/T
line Double Oracle g O(AISIVHIAI/T) g

Nash Equilibrium in Two-Player Zero-Sum Games

» von Neumann theorem: Two-player Nash can be computed in P-time through linear programmes (LP).
Dual problem Minimax theorem

row player maximises the worst situation column player’s view zero-duality gap for convex problems

S e max minp ' Aq
st p'A>v-1 / st.q'A' <v-1 H : =qmin max p'Aq
p>0andp'l=1 q>0andq'l=1 g

» The v* is the Nash value

& oy Ve dle o definiion of v, v = v due to being the LP selution.

+ corollary: all Nash value are the same (saddle point Is unique In bimatrix game).

o The (p, q) is the Nash equilibrium:

® DEoor: suppose the player plays x, y instead ofp q

S — Z g = max(Ag). —v = v, p Ay — Z (pTA) Y, 2 min (pTA), = v, = V¥, thus no incentives to deviate.

i€[N] J je[M] i
| =1

e Sion’s minimax theorem generalises to quasi-convex/concave functions ml)? sup f(x, y) = sup mel)f(lf(xa y)
yeY yeYy *

When and Why we need Population-based Methods !

OPPONENT)

Output: the reward (Rl, :RY

Black-box multi-agent
game engine

Input:

CHECKS

TRAVERSER P : ADJUST PROBABILITIES TO
EXPLORES BETTING o I 10% CHECK MORE IN THIS

é SITUATION IN THE FUTURE

\ \

OPPONENT OPPONENT WOULD
BETS % HAVE RAISED

TRAVERSER \ p\ PLURIBUS EXPLORES

/ CALLING
EXPLORES FOLDING 55% 25% 26%
S %
-$100 W& -$600 ADJUST PROBABILITIES

$200 -$300 TO FOLD MORE IN THIS
e SITUATION IN THE FUTURE

OPPONENT WINS a
$200

; A 5 - = d
5 N o4 iy P e X =
| ==z ‘,f v W3S 58 N Pl
T WAy X A TOF LR g ~ Y N\ > =
3 '. o Py 1<) ERIEN A o - A &\ ‘ >
B AN ALAE . 7 ant Ml AN A S Y AL NG

Population based methods: StarCraft type

When planning is feasible (game tree is easily
accessible), existing techniques can solve the
games really well.

Perfect-information games:
MCTS, alpha-beta search, AlphaGO series
(AlphaZero, MuZero, etc)

Imperfect-information:
CFR series (DeepCFR, Libratus/Pluribus,
Deepstack), XFP/NFSP series

When planning is not feasible. StarCraft has 10%°
choices per time step vs. the whole tree of chess
10°° (Texas holdem 10%°, GO 10'Y).
Enumerating all policies’ actions at each state
and then playing a best response is infeasible.

Solution: training a population of RL agents,
treat each RL agent as one “pure strategy’’ and
solve the game at a meta level where an agent is
a RL model of a player, and we need a population
of those agents (due to non-transitivity).

Life up the problem to the meta level (i.e., the policy level)

» A player in zero-sum games usually have multiple strategies (Rock, Paper, Scissor).

* One strategy / policy corresponds to one “agent” @ A player . is represented
by a population of agents (due to non-transitivity).

° VWe now need to study the meta-game:

* We need to build that population of agents such that the player is unexploitable.

&
@ meta-game g@ g
- analysis @@ ﬁs@

—)

Player = Agent A Player has a a population of Agents

Formulation of Population Based Learning in Zero-Sum Games

o Let’s formulate the self-play process.

= Suppose two agents, agent | adopts policy parameterised by v € R¢ and agent 2 adopts policy w € R¢
They can be considered as two neural networks.

.....

Q. VXW |

RL model RL model

m () represents the game rule, it is anti-symmetrical.

m with ¢, (*) := @(*,W), we can have the best response defined by:

' := Br(w) = Oracle(v, ¢, (-)) sit. @ (V) > ¢ (V) + €

m Oracle: a god tells us how to beat the enemy, it can be implemented by a RL algorithm, for example
PPO + PBT as we have mentioned early, or other optimiser such as evolutionary algorithm.

Naive Self-play Will Not Work

Question: Can we use it as a general framework to solve any games!

Algorlthm 2 Self-play : ~ self-plays

input: agent v,
fort=1,...,7 do

Vi1 < oracle (Vt> ¢w(‘))
end for

output: v

(71'1,71'2> — (72’1,72'2’* — Br(nl)) — (721’* — Br(ﬂ'z’*),ﬂ'z’*)
s .

It depends. In most of the games, it does not work.

Naive Self-play Will Not Work

Scissors

beats paper

e It is because of Non-Transitivity

O(v,w)-dw =0, Vve W
W

» Rock-Paper-Scissor game:

400

o~
I=
8’)0-6 R B B » o2 X 300 g
- - % Ngver converge! ¢ ! | 5
O 1 —1 >04f | v « f“ 200 O
- % \\\\ N\ A - P
1 () 1 ao_z\“%\\\‘¢:x// 100
he -~ -~ 7/
2 1 1 O— 0.0 NN \\ _________ W S 0

0.0 0.2 0.4 0.6 0.8 1.0
Policy of Agent 1

* Disc game:
0, —1

¢(V9 W) = VT : 1

- W = V1W2 = V2W1

Game Decomposition

° Every FFG can be decomposed into two parts [Balduzzi 201 9]

FFG = Transitive game @ Non-transitive game

° Letv,w € W be a compact set and ¢(v, w) prescribe the flow from v to w, then this is
a natural result after applying combinatorial hodge theory [Jiang 201 1].

* We can write any games ¢ as summation of two orthogonal components
grad(f)(v, w) := f(v) — f(w) div(g)(v) := |, (v, W) - dw curl(¢)(w, v, w) := ¢(u, v) + ¢(v, W) — ¢(u, w)

¢ = grad o div(¢p) + (¢ — grad o div(¢))
a0 dive 0 J

‘Transitive game‘ ‘Non-transitive game‘

 Example on Rock-Paper-Scissor

R P S R P S R P S R P S
R | 0,0 | —3z 3z | 3y, —3y || Rly—2)(y—2) | (y—2)(z-2) | (y—2),(2~y) R 0,0 —(z+y+2),(z+ty+2) | (z+y+2),—(z+y+2) R|(z—y),(@z-y) |[(z-2),(z-y) | (y—2),(z—y)
P |3z,—3z| 0,0 | —3232 T P|l(z—2),y—2z) | (z—2),@—2) | (z—2),(2—y) + P|(z+y+z),—(z+y+2) 0, 0 —(z+y+2),(z+y+2) + P|(2-y),(z—2) | (z-2),(z-2) | (y—2),(2—2)
S | =3y,3y | 32,3z | 0,0 S| (z—y),ly—=z) | (z—y)(—2) | (z—y),(2—y) S| —(z+ty+z),(zty+tz) | (z+ty+z),—(z+y+2) 0,0 SlE—y),y—2) [(z—2),y—2 [(y—2),(y—2)
(a) Generalized RPS Game (c) Potential Component (d) Harmonic Component (b) Nonstrategic Component

Transitive game Non-transitive game

What is Transitivity !

» Every FFG can be decomposed into two parts

FFG = Transitive game @ Non-transitivegame

 Transitive Game: the rules of winning are transitive across different players.

v, beatsv,_;, Vv, |beatsy, — v,_, beatsy,_;

s Example: Elo rating (EX{i) offers rating scores f(-) that assume transitivity.

P (v, w) = softmax(f(v) — fiw))

m |arger score means you are likely to win over players with lower scores.

m Elo score is widely used in GO and Chess.

m This explains why you don’t want to play with rookies, when f(v,) > f(w),
Vo (v, W) = 0

~Scissors ™
What is Non-Transitivity ? & @@

* Every FFG can be decomposed into two parts

FFG = Transitive game @ Non-transitivegame

 Non-transitive Game: the rules of winning are not-transitive across players.

v, beatsv,_,, v, ,beatsv, » v,_, beatsy,_;

m Mutual dominance across different types of modules in a game. This is commonly
observed in modern MOBA games.

= "IN

e
- Yo a Y.
WARCRATT
PAV RS

m For this types of game, self-play is not helpful at all because transitivity assumption
does not hold. Self-play could lead to cyclic loops forever.

Visualisation of Transitive and Non-Transitive Games

° Let us define the evaluation matrix for a population of N agents to be

A‘B - {¢(Wi,Wj> : (Wl-,Wj) = ’BX‘B} :¢(E[3®’B)

Almost Transitive Mixed Almost Cyclic Random
YT SEIas TSRS . R B R g R R R RS AR B y”
:.- " : :Eiﬁ . '. . '==E' 255'1 'u' "
i BN R x g
.' n::: """" ui.o. z ':.a : ii:=5.
- ..l : u E' T :ég E it]
" " . == 3555:! ' J
. - .= pT Sand seses
$: .. . iteemg s
st 3 B b 853 Beeel. -
- -'-.. =:gl
.:-::::ﬁ.(vi ’ W) i bt SR i
i fojs o Dhiladi e Rl B
LR T 8 "E.8 0.2 faiis, i
L= e @&
| *%e Q. ° ‘.'O > °
o0 ° . e el o
V 9]
c : ") A
» ¢) e ..‘.‘ ’
% > o »® ©r
@] .
t KL ¢ . ane*® o
o

Figure 1. Low-dim gamescapes of various basic game structures. Top row: Evaluation matrices of populations of 40 agents each;
colors vary from red to green as ¢ ranges over [—1, 1]. Bottom row: 2-dim embedding obtained by using first 2 dimensions of Schur
'decomposition of the payoff matrix; Color corresponds to average payoff of an agent against entire population; EGS of the transitive game

is a line; EGS of the cyclic game is two-dim near-circular polytope given by convex hull of points. For extended version see Figure@in |
the Appendix.

[Balduzzi 2019]

The Spinning Top Hypothesis

®*Real-world games are mixtures of both transitive and | Game geometry Game profile

in-transitive components, e.g., Go, DOTA, StarCraft Il. t y .
.. z 53
Nash of the game L. E': g 2
o 2 :

: 3 ¢ 5 o 5
® Though winning is often harder than losing a game, 3 ;3
finding a strategy that always loses is also challenging. Non-transitivity 5 22
duall g 2

disappears o

(Section 2) 5’

® Players who regularly practice start to beat less skilled
players, this corresponds to the transitive dynamics.

Extremely

| non-transitive

°® At certain level (the red part), players will start to find (Theorem D
B (o <tyles Despite not providinga | T o

to lose

universal advantage against all opponents, players will
counter each other within the same transitive group.
This provide direct information of improvement.

Non-transitive dimension
e.g. length of the longest cycle
or Nash cluster size

Non-transitive
cyclic dimensions

' - Figure 1: High-level visualisation of the geometry of Games of Skill. It shows a strong transitive |
ey playe [EDEeR 0 the hlgheSt Ievel’ e slils W) dimension, that is accompanied by the highly cyclic dimensions, which gradually diminishes as skill
strategy styles, the outcome relies mostly on skill and grows towards the Nash Equilibrium (upward), and diminishes as skill evolves towards the worst|
| icul | J;(/I\/l‘l\)\‘\ - 21K possible strategies (dlownward). The simplest example of non-transitive behaviour is a cycle of length|
ol el Pal"tICU S sdils St)’ €3 (I /] 3Z). -3 that one finds e.g. in the Rock Paper Scissors game.

[Czarnecki 2020]

Measuring the Non-Transitivity

c A of the size of non-transitivity [Czarnecki 2020]
* n-bit communicative game

Definition 1. Consider the extensive form view of the win-draw-loss version of any underlying game;
the underlying game is called n-bit communicative if each player can transmit n € R bits of

information to the other player before reaching the node whereafter at least one of the outcomes ‘win’
or ‘loss’ is not attainable.

bit: how many action one can take before the outcome of the game is predetermined

Theorem 1. For every game that is at least n-bit communicative, and every antisymmetric win-loss
payoffmatrix P € {—1,0,1}2"1X(2"] there exists a set of | 2" | pure strategies {1, ..., m|9n |} C II
such that P;; = f1(m;,m;), and | z] = max,eya < .

¢ Results on GO and MOBA games:

Proposition 1. The game of Go is at least 1000-bit communicative and contains a cycle of
least 21000

Proposition 2. Modern games, such as StarCraft, DOTA or Quake, when limited to 10 minutes play,
are at least 36000-bit communicative.

Measuring the Non- Transitivity

e A of measurement through meta-game analysis
+ Computing n-bit communicative game needs full tree traversing, thus intractable

+ Deciding a graph has a path of length higher than k is NP-hard | = Aeemenstosest et P s 0t

Andreas Bjorklund!, Thore Husfeldt!, and Sanjeev Khanna?*

! Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.

°
¢ One needs to approximate
. 2 Dept. of CIS, University of Pennsylvania, Philadelphia, PA 19104.
sanjeev@cis.upenn.edu

¢ Method |, count the

s when k=3, we can compute by constructing A;; =1 < ¢;; > 0, then

+ Method I, at each transitivity level, we can measure the

Definition 3. Nash clustering C of the finite zero-sum symmetric game strategy 11 set by setting for
eacht > 1: N;i1 = supp(Nash(P|II'\ J,.; N;)) for No =0 and C = (N; : j € NA N; # 0).

N = supp(Nash())

l

strategies that at the
higher level of transitivity

Measuring the Non-Transitivity in Chess

» Real-world data set from human players on Chess
+ We study one billion human player records from Lichess platform

+ Human Chess players presents the spinning-top pattern, which verifies the hypothesis

—
t 5 Lichess 2020 Lichess 2020 Lichess 2020
Nashofthegame [.~~~ | - 3000 -
N RPS cycles 0.81
2500 . 05
)
>
T
o 0.2
Q
(@) (@)}
£ 2000 2
S g 0.0
2 ©
w 7]
£.0.2
1500 - O
Q.
Y
0.5
1000 - 08
.. o
74641 58581 42521 26462 10402 0 8 16 24 32 40 0 500 1000 1500 2000
Counts Cluster Size lterations
(b) (c)

https://arxiv.org/paf/2 1 10.1 1 /737.pdf

Non-Transitivity Harms Training !

Example on training AlphaStar:

| € Multi-agent learning d Multi-agent learning

pFSP + SP 1,540 pFSP + SP 71%
B B O
pFSP 1,273 pFSP 70%
FSP 1,143 FSP 69%
0 6(')0 1 ,ZIOO 1 ,8IOO 2,4;00 0 2'5 5|0 7l5 :
Test Elo [Vinyals 2019, Table 3] Min win rate vs past (%)
Example on training Soccer Al: Example on training AlphaGO:

Table 2: Average goal difference + one standard deviation
across J repetitions of the experiment.

A vs built-in Al 4.25 +1.72
Bvs A 11.93 +2.19
B vs built-in AI —0.27 +=0.33

Figure 5: Intransitive behaviour for ay, ap, and
Zen.

[Karol 2020, table 2] [Silver 2016, table 9]

http://www.drive-ml.com

Dealing With Non-Transitivity Helps Save Training Time

Table 2: Size of the Nash Support of Games

Game Total Strategies Size of Nash support
Progression of Nash 3-Move Parity Game 2 160 1
of AlphaStar League | 5.4-Blotto 56 6
AlphaStar 888 3
Training Days Connect Four 1470 23
Disc Game 1000 27
Elo game + noise=0.1 1000 6
Most strategies we get from " V_Sypi ' Elo game 1000 g
training are in fact redundant ! J N 14 Go (boardsize=3,komi=6.5) 1933 13
0 100 260 300 400 500 600 Misere (game=tic tac toe) 926 1
| Agentid Normal Bernoulli game 1000 5
. THE NASH DISTRIBUTION OVER COMPETITORS AS THE ALPHASTAR LEAGUE Quoridor (boardsize=3) 1404 1
PROGRESSED AND NEW COMPETITORS WERE CREATED. THE NASH .
DISTRIBUTION, WHICH IS THE LEAST EXPLOITABLE SET OF COMPLEMENTARY Random game of skill 1000 5
| COMPETITORS, WEIGHTS THE NEWEST COMPETITORS MOST HIGHLY, Tic Tac T 230 .
| DEMONSTRATING CONTINUAL PROGRESS AGAINST ALL PREVIOUS 1C 1ac 10€
j COMPETITORS. Transitive game 1000 1
Triangular game 1000 1
[AlphaStar Blog]

lLe Ceone Dinn 2000

http://www.drive-ml.com

Understanding Non-Transitivity Helps Develop Algorithms !

» Topological structure at the policy space affects the efficiency of training algorithm.

+ for example, there is a reason why we need diversity in the policy space.

Theorem 3. If at any point in time, the training population P includes any full Nash cluster
Cz C P, then. training against " by ﬁndjng_w such that V. cp:t (m,m;) > 0 guarantees transitive
improvement in terms of the Nash clustering J;,.; m € Cy.

+ on chess, large population size (thus more diversity) will have a phase change in the strength !

Chess 1000

— 1

— 25

0754 —— 20
— 75

— 100

—— 150
0.504 —— 200
—— 250
300

Large population
size helps strengthen
the performance !

S 0.00-
~0.25 A
~0.50 A
—0.75 1

ﬂﬂ,4~H*v~“*“vww~wvMw-*Mmw***“v"*“V**UWhnMwW*”N““HﬁW*WMﬂhﬂuﬁﬂ*mhwﬂ

0 250 500 750 100 1250 1500 1750 2000
Iterations

Understanding Non-Transitivity Helps Develop Efficient Algorithms !

- - - p—
- -t - 49 -

Optimizer + Connected Rollout Workers (x256)

o8 Rollout Work
500 CPU
RRRRRRRR des Optimizer
« 80% against current bot 1p100 GPU
* 20% against mixture of past versions R Compute Gradients
game g = Proximal Policy Optimization
with Adam
Push data every 60s of gameplay « Batches of 4096 obser
« Discount rewards across the 60s using « BPTT over 16 observations
generalized ad vanta ge estimation
Eval Workers
~2500 CPUs
nnnnnnnnnnnnnnnnnnnnnnnnn Model
llllllllllll Paramet
* vs hardcoded “scripted” bot
pr imilar bots (
compute Trueskill)
s self (umans to wi
and analyze))

Marine (Agent)

(a) Multiagent policy networks (b) Multiagent Q networks

BiCNet, deep MARL methods Population-based + Rapid training system
I -2 GPUs, 1-2 days 128,000 CPUs, 100 GPUs, 180 years of plays per day

nnnnn

-] g e LeagueMgr
|~ | ae =
o —— HyperMgr M, copies
aer
e GameMgr ModelPool
i
— Saver
= st NN param NN param
J Outcome Task
-mm / \ Mg copies
T— .
N param Task M, copies
M, copies
Progression of Nash Actor Learner
of AlphaStar League Env Trajectories ReplayMem
Agt DataServer

Act Obs

' "r(

M, copies

, ‘ ;)k " 'E%.'C (\3/] i s;‘f"'c'lf ﬁ\'c %“” !F!" InfServer B NN param

Populating-based Training

Training for single agent costs 14 days, 16 TPUs/Agent, Populating-based Competitive Self-play + Policy distillation
200 years of real-time play. 35,000 CPUs, 320 GPUs, begin to converge after 336 hours

Understanding Non-Transitivity Helps Develop Efficient Algorithms !

State of the art Al
In Real World Games

MinMax Tree Search Any small game

Go
AlphaZero Go, Chess, Shogi
OpenAI F|ve DOTA
DeepMind FTW Quake lll CTF
AIphaStar StarCraft Il
Pluribus Poker
Algorithm Game

MinMax No-learning
Search Self-play
Reward shaping Co-play

Strong priors Fictitious Play

Imitation init Population Play

Agent stack Multi agent stack

Robuesteness to
non-transitivity

Initial transitive
strength in a top

[Czarnecki 2020]

I self-play |
Fictitious play |

PS RO

oooooooooooooooooooooooooooo

S

Geometry

Coming from the
agent stack

Solutions: Fictitious Play [Brown [1951]

* Maintain a belief over the historical actions that the opponent has played, and the
learning agent then takes the best response to this empirical average distribution.

: 1 —1
al.t’ - BR,-(pii — 7T=Zof{afi =a,a € A})

1 1
pl?“ — (1 - 7)pl.t+ 761;’ , forall 1

° It guarantees to converge, in terms of the Nash value, in two-player zero-sum games,

potential games and 2 X 2 games , and, the average policy converge to the Nash strategy.

Player 2

» Examples: A

)
N o

P 4
(3/4, 1/4) | (1/4, 3/4)
(3/4,5/4) | (5/4,3/4)
(7/4,5/4) | (5/4,7/4)
(7/4,9/4) | (9/4,7/4)

Al (1) | 0)0)

" Player 1

e W N = OO
C o O

B {©0) | (1,1)

|

oo (1/2,1/2) (1/2, 1/2)

Generalised Weakened Fictitious Play [Leslie 2006]

°lt releases the FP by allowing approximate best response and perturbed average
strategy updates, while maintaining the same convergence guarantee if met.

Bl’f(]?_i) = {pl : Rl-(pi,p_,-) > Ri(Bri(p—i)’p—i> - 6}

pHH = (1 . af+1) pl+ att! (Brf(p_,.)+M;+1), Sl

l

=1 I— o0 k

k—1 k—1
t - oo,a, > 0, = 0, 2 @' =0 {M'} meets lim sup { || Zai+1Mi+1|| st.) a't! < T} =0
1=t 1=t

* Recovers normal Fictitious Play when o' = 1/t,¢, = 0,M, = 0.

* Why important: it allows us to use a broad class of best responses such as RL
algorithms, and also, the policy exploration in e.g. soft-Q learning. Also, GWFP makes FP

no-regret by introducing the perturbation term M.

Solutions: Double Oracle [McMahan 2003}

° Double Oracle best responds to the opponent’s Nash equilibrium at each iteration.

* To solve the game before seeing all pure strategies (not all of them are in Nash), much
faster than LP, but In the worst-case scenario, it recovers to solve the original game.

Algorithm 1 Double Oracle (McMahan et al., 2003)

Hiteration O: restricted game R vs R

I: Imput: A set 11, C' strategy set of players miteration 1-
2: 1lp, Co: initial set of strategies » solve Nash of restricted game
3: fort = 1tooodo (1,0,0), (1,0, 0)
4. i 1y # 11—y or Cy 7 Ci—y then ° unrestricted Br', Br* = P, P
5: Solve the NE of the subgame G: Site ation 2. : ,
(w7, c}) = argmingea,, argmaxeea,, 7' Ac » solve Nash of restricted games
6: Find the best response a;1 and ¢;1 to (7}, ¢}): 0,1,0), (0,1, 0)
o . —|—A " y 1y y 9 9
Pt+1 B a,%gllllllaen a*T Ct ® unrestricted Brl, Br’ = S S
Ci+1 = argmaxXecc ™, Ac sharaion 3
7 Update Il;41 = I;U{ @41}, Cryr = CrU{Crsa) ° solve Na;sh of restricted game
8: elseifll, = Il;—y and ¢ = €y then (1/3,1/3, 1/3) , (1/3, 1/3, 1/3)
9: Terminate : e ; i
0 end if Hiteration 4: no new response, END

11 end for ° output (1/3, 1/3, 1/3)

Double Oracle [McMahan 2003}

° It guarantees to converge to Nash equilibrium in two-player zero-sum games, and
coarse correlated equilibrium in multi-player general-sum games.

» Convergence proof:

+ DO finally recovers to solve the whole game
» Correctness proof:

* DO stops at the j-th sub-game, we can prove

' Vp’ V(p, q]) Z vV = Vpa max V(p9 Q) Z V

: = Vp,max V(p;, q) < max,(p,q)
Vq,V(p,q) <v = max V(p;,q) <v 1
q p; must be the minimax optimal,

q; Vice versa

Policy Space Response Oracle = Double Oracle with RL Agent

» A generalisation of double oracle methods on meta-games,

with the best responser is implemented through deep RL
algorithmes.

A meta-game is (II, U,n) where Il = (I11;,...,IL) is the
set of policies for each agent and U : Il - R" is the
reward values for each agent given a joint strategy profile.

° o_; is distribution over a1 HlT), a.k.a meta-solver
» PSRO generalises all previous methods by varying o_..
® independent learning: o_; = (0,...,0,0,1)
= Ul)
m fictitious play:o_, = (1/T,1/7,...,1/T,0)
= PSRO: 6_; = Nash(I1"~!, U) or RD(IT""!, U)

l

= self-play: o_;

~ Algorithm 1: Policy-Space Response Oracles

input :initial policy sets for all players 11 |
~ Compute exp. utilities U for each joint 7 € IT |
- Initialize meta-strategies o; = UNIFORM(II;)
~ while epoch ein {1,2,---} do

for player i € [[n]] do

| for many episodes do

|

Sample T_; ~ 04
el Train oracle 7 over p ~ (7, 7_;)
e I, =11, U {n;}
Compute missing entries in U™ from II
Compute a meta-strategy o from U

- Output current solution strategy o; for player ¢

Contents

o Rectified Nash

oDiverse PSRO

o PSRO with Behavioural Diversity
o Joint PSRO

o Pipeline PSRO

o Mixed Oracles / Opponents

o Neural Auto-curricula

Meta-Game Structure [Czarnecki et al. 2020]

Interesting games display a particular spinning-top structure

Diversity disappears and skill
becomes the dominant factor, l.e.
the game becomes fully transitive

Diverse game-styles are prevalent
and perform similarly to each-other,
i.e. we are in the non-transitive layer

Non-transitivity
gradually
disappears
(Section 2)

Agents trying
to lose

Non-transitive
cyclic dimensions

=
uoisuswip aAllisuedj

Game geometry

The big question is how
does one move efficiently
between the layers?

Why is Diversity Important!?

Theorem 3. If at any point in time, the training population P"' includes any full Nash cluster
Cz C P, then. training against 7" by finding 7 such that Vr.epE(m,m;) > 0 guarantees transitive
improvement in terms of the Nash clustering .., m € Cy.

Chess 1000

Diverse Auto-Curriculum is Critical for Successful
Real-World Multiagent Learning Systems®
Blue Sky Ideas Track

: Yaodong Yang™ Jun Luo Ying Wen
= University College London Huawei Canada Shanghai Jiao Tong University
g Huawei R&D UK.
Oliver Slumbers Daniel Graves Haitham Bou Ammar
University College London Huawei Canada Huawei R&D U.K.
Jun Wang Matthew E. Taylor
University College London University of Alberta
Huawei R&D U.K. Alberta Machine Intelligence Institute

Iterations

 Diversity matters because the more diverse the population pool, the less exploitable. Promoting diversity
can help you break out of in-transitive regions faster.

° In real-world applications, you want policies to cover different skill-sets. This is a realistic need from
autonomous driving and gaming Al applications.

Gamescapes

» A crucial component in characterising a population is that of the
empirical gamescape

» Measure all ways agents can and are observed to interact with each-
other

Almost Transitive M'i'xe_d - ' —
u. z T
o Schur Decomposition of i 1. i e -
certain payoff matrices paints et BT
an intuitive picture bR
e Games show an obvious ** . ‘.
gamescape structure ' e K e
C -;(JPO o ...

Given population * of n agents with evaluation matrix Ay,
the corresponding empirical gamescape (EGS) is

Oy = {convex mixtures of rows of Ay }

Almost Cyclic Random
E nii !lm ll -.n a r IIIII ‘ [= - =}
i 'i..." .usun - :
o o S . wes
CREE 3
o AP : .
DER VR LU
e : :
B Rl B R
iR e £ R,
Ry X g T :
R R 4.k i .
e
g%’ o *
@& C("‘C N ® .
§ o Se
% o . s, © o O
? ® ‘~D. - - .
O 0%y
o® o ® ¢
Q

Obvious linear/transitive structure Obvious cyclic/non-transitive structure

PSRO-rN [Balduzzi et al. 2019] - Algorithm

Definition 4. Denote the rectifier by |x|, = zifz > 0
and |z |, := 0 otherwise. Given population ‘B, let p be

a Nash equilibrium on Asz. The effective diversity of the
population is:

d("p) = pT ' I_A’:T-?J_F P = Z |_¢(W’i7wj)J+ *DiDj-

t,J=1

Effective diversity quantifies how the best agents in a
population exploit each other - Dominant Agent = 0 Diversity

A B Gradients C Gradients

Paper I against against
a

R S
Gradients \

against

o \ S
Rock Gradients
against P
o
Scissors ‘/(.Bradients Gradients
against P against R

Figure 3. A: Rock-paper-scissors. B: Gradient updates obtained
from PSRO,yn, amplifying strengths, grow gamescape (gray to
blue). C: Gradients obtained by optimizing agents to reduces their
losses shrink gamescape (gray to red).

Intuition: improving ones strengths allows
for exploration of the strategy space

key changes: only selecting opponents that you
already beat (i.e. rectifying the Nash)

V.« oracle(vt ; z p,li] - Wwi(o)J+)

WiE’Bt

Proposition 6. If p is a Nash equilibrium on Ay and
> :Didw, (V) > 0, then adding v to B strictly enlarges
the empirical gamescape: Gy C Gpuiv)-

Algorithm 4 Response to rectified Nash (PSRO,y)
input: population 3,
fort=1,...,7T do
p: < Nash on Agg,
for agent v, with positive mass in p; do

Vigl < oracle (Vt, Zwié’l}t Pt [7'] . I_¢Wz (')J—i—)
end for

PBir1 < P U {vee1 : updated above}
end for

output: ‘P71

PSRO-rN [Balduzzi et al. 201 9] - Results

Area

0.006 -

0.005 4

0.004 -

0.003 -

0.002 -

0.001 -

0.000 4

Relative Population Performance of PSROy |
0.4 - | |
|
0.3 - .
| 0.2- i
0.1 - | |
0.0 | A= me————————— _ __/ ______________
50 100 150 200 100 200 300
MPO steps x 1000 Gradient steps ,
—— PSRO,y Vs. Self-play ~ =—— PSRO,y vs. PSRO|, PSRO,y VS. PSROy,

Area of Convex Hull in
2D embedding of EGS | PSRO,x Self-Play PSRO PSRO,

0.10 +

0.05 +

0.00 +

= PSRO, - PSRO,
PSROy - Self-play

//
-0.05 4 v

| | | | | | | | | | | | ‘ o

7 9 11 13 15 17 19 21 23 25 27 29
lteration

efficiently and effectively

Diversity "helps in eﬂxplorin'g the strategy spaée more

Contents

o Rectified Nash

e Diverse PSRO

o PSRO with Behavioural Diversity
o Joint PSRO

o Pipeline PSRO

o Mixed Oracles / Opponents

o Neural Auto-curricula

Diverse-PSRO

Modelling Behavioural Diversity for Learning in Open-Ended Games

Nicolas Perez Nieves !> Yaodong Yang " '3 Oliver Slumbers “? David Henry Mguni' Ying Wen? Jun Wang '3

| .Go back to first principles: diversity should be defined in terms of orthogonality.

+ Determinantal Point Process [Alex Kulesza 2013] : a point process parameterised by a distance kernel.

Point process samples

:o o) q ¢
A $ o0, , ¢ °.°
o: - ¢ J o
e® o . c o
o o * = y
g) : T
Independent

Image search: “jaguar” Discrete point processes

Relevance o N items (e.g., images or sentences):
only:
y=A{12,...,N}
2N ible sub
° possible subsets
Relevance

+ diversity:

o Probability measure P over subsets Y C

DPP(Z)

P(Y) X det(Ly)

= squared volume spanned by
w(i),i €Y

L L;; ﬁi-j
PL‘,({Z"J}) :xi Lj.i Ljej

= L;:L;;i—L;;Lj;,

) ox deU(Fy) = Vol (#iey)|

Diverse-PSRO

| .Go back to first principles: diversity should be defined in terms of orthogonality.

+ Policy diversity can be measured by orthogonality of pay-off vectors,i.e., < = MM .

+ The expected cardinality of the DPP is the diversity metric.

Diversity (S) = Eyp | Y [1="Tr (I - (gg - I)_l)

Figure 1: Game-DPP. The squared volume of the grey
cube equals to det(L (st.5!. 55}). Since Si’Sé share similar
payoff vectors, this leads to a smaller yellow area, and
thus the probability of these two strategies co-occuring is

low. The diversity (expected cardinality) of the population

{S{' }L{SE, Sé},{Si, Sé, Sé} are 0,1, 1.21 respectively.

Diverse-PSRO

+ Based on the diversity metric, we can design diversity-aware PSRO

Diversity (S) =Ey.p [Y]] =Tr (I - <‘5/p§ : I)_l)

¢+ Diverse PSRO

0! (722) = arg max Z n (Sz) - P (Sg, S2) v Dlversih (Sl U {S@})
OER? (2 2

¢ Diverse a-PSRO (a-Rank as meta-solver)
2 -1
O (71') = argmax It (I — (ZLsiy(m +1))

+ Importantly, we prove that

Gamescape (S) € Gamescape (S U {Se})

Diverse-PSRO

Non-transitive mixture model
Games of Skill (10°x103) - ® PSRO
® PSRO-rN
5.0 1.0 ® P-PSRO
® Ours
20.8
2.0 2
Fy — 206(4
= 1.0 : g a
§ . 0.4 V. ”
S 05 ' M e "
ol g N
a 0.0 o & XY
0 2 ‘J\.d, ! Eipected Ca?'dinality !
0.1 \ Figure 3. Non-transitive mixture model. Exploration trajectories during training and Performance vs. Diversity comparisons.
*W/'\Mvw
- Se||f_p|ay Colonel Blotto Game Normal Form Games (100 x 100) Normal Form Games (200 x 200)
| —— PSRO o - —— a-PSRO
20 T oetom et | Ours VS PSRO 0.4 0.3 oure
2 /) | Ours — PSRO-rN v v
= | — P-PSRO . 5 5
© _ 0 0.35 8 80.2
% 151 —— Ours 4—5 70, ;
o ‘D 4 £0.1
S > T |
© 10 -~ ‘B | p——
O / ©0.30 0.0} | | | | - 0.0 | . | : i
'S] a Normal Form Games (500 x 500) 0.06, Normal Form Games (1000 x 1000)
g S —— X
ﬁ 5 lq-, 0.10
>0.25 5 5004
o @ &
o a $0.05 80.02
0 25 50 75 100 125 150 175 200 | |
Iterations 0.20L . , : . : - - 0.00 | 0.00
0 25 50 75 100 125 150 0 10 20 3040 50 "0 10 20 3040 50
: - Iterations terations terations
the most efficient population-based zero-sum @) 0)
a
game solver so far!
Figure 4. a) Performance of our diverse PSRO vs. PSRO, diverse PSRO vs. PSRO,.n on the Blotto Game, b) PCS-Score comparison of
our diverse a-PSRO vs. a-PSRQO on NFGs with variable sizes.

Contents

o Rectified Nash

oDiverse PSRO

e PSRO with Behavioural Diversity
o Joint PSRO

o Pipeline PSRO

o Mixed Oracles / Opponents

o Neural Auto-curricula

Behavioural Diversity + Response Diversity Unifying Behavioral and Response Diversity for

Open-ended Learning in Zero-sum Games

Xiangyu Liu', Hangtian Jia?, Ying Wen'} Yaodong Yang?, Yujing Hu?,
Yingfeng Chen?, Changjie Fan? and Zhipeng Hu?
1 Shanghai Jiao Tong University, 2Netease Fuxi AI Lab, 3University College London

» Rectified PSRO & Diverse PSRO introduced the notion of response diversity (diversity of rewards)
 We want both the outcomes and the policies that lead to those outcomes to be diverse

o Diversity should include both response diversity, and behavioural diversity (diversity of the policies)

DPP-PSRO Determinantal point process
Our Methods Occupancy measure & convex hull

2-player general-sum game
n-player general-sum game

Method Tool for Diversity BD RD Game Type
DvD Determinant v X Single-agent
PSROn None X X n-player general-sum game
PSROn L, 1 norm X v 2-player zero-sum game
X v
v v

Behavioural Diversity + Response Diversity

o Behavioural Diversity: Assume that we use the Nash distribution as our meta-solver, 7 = (7, 7y), we want a

M+1 that has a different occupancy measure p_(s) = (1 — 7) 2 6 (S; =3 7’) from 7g:

=

new policy 7

» One can train a neural network f; to fit (s,a) ~ p, , and then assign an intrinsic reward by encouraging the

new policy to visit state-action pairs with a large prediction error (not covered by the existing occupancy
measure).

max R™(s, a) = ”f@(S, a) — fy(s,) ” 2

Behavioural Diversity + Response Diversity

M

» Response Diversity: we want the new policy 7! to expand the convex hull of the existing meta-game A, by

- - . Ml g o
introducing a new payoff vector a,, , := [¢i(”i , n_i)]jzlthat

o the above equation has no closed form, but we can optimise a lower bound

2
Gr%lin(A)<1 ol (AT)T an+1) -
Divrey, (1) 2 F(aM+) = — - (1-AT(AT)),

* However, how can we know the payoff a,,. ; before actually training the policy?

,...,

OF (7)) (aqb,. (z(0), =) 9¢ (n;(e),n%)> oF

o 00 00 day,.

M

the answer: we can train against 7~ based on the weights suggested by dF/oa,,, ; !

Behavioural Diversity + Response Diversity

» Performance when considering both Diversity terms is very impressive

[V(S a)] o /11 DIVOCC () 25 /12 DlVreW (ﬂz/)

arg max [E

7Z'i/ L aNp”l’”E_
PSRO) ESRE)))N P- PS(R))O) DPP PSRO P- f’_S»RO v))\j RD P- P_SRO w. BD P- PSRO w BD&RD
| = I A\ — | 9\ (6 =
AlphasStar L 3))}}&))){%)\> .A(<>>>>>)))§ {(R@)f@(ﬁ)\ e (e))*< i %'-‘\(Welie)/ \
—— PSRO) =< X ((((@ =\\ —
—— Self-play {{))y(i) <<”)>>jf/((<<>J>) D))4 (@M(<>))3‘)§§/ (€ /i/(((
—— DPP-PSRO
— P-PSROw.RD Figure 2: Exploration trajectories during training process on Non-Transitive Mixture Games.
2 ~— P-PSROw. BD
® —— P-PSRO w. BD&RD
S | | | | .
Q. iy . 6:06 m 6:07 mm 0:0.8 . 6:0.9 m 06:1.0
W 10 150
- Potbsn g 0:75 |II III III III' IIII
g2 1T W M 1N
0 20 40 60 80 100 120 140 | 025 as ’
Training Iteratlons Self-play PSRO PSRO-rN PSRO w. BD PSRO w. RD PSRO w. BD&RD
) | - Figure 3: The average goal difference between all the methods and the built-in bots with various
(a _, difficulty levels 6 (6 € [0, 1] and larger § means harder bot) on Google Research Football.

Contents

o Rectified Nash

oDiverse PSRO

o PSRO with Behavioural Diversity
ejJoint PSRO

o Pipeline PSRO

o Mixed Oracles / Opponents

o Neural Auto-curricula

Joint PSRO [Marris et al. 2021]

» Developed for n-player general-sum extensive-form games, beyond two-player zero-sum

» Maximum Gini Correlated Equilibrium as meta-solver

Maximised for a perfectly uniform mixed-
strategy

Gini objective: max——o0" o
J Correlated equilibrium is a joint mixed

strategy where no player gains from a
unilateral deviation

(C)CE constraints:

Probability constraints:

Joint PSRO [Marris et al. 2021] - Results

101 2.0 - — o —@ *—e — —& *— —:'_/_/_. —o=
100 —A— ﬁs—MGCCE —e— Uniform / e o—~ ¢ —°
"~ —— MGCCE —eo— PRD . o 1.5 - | /_/—o’
@ 107 ——*—— " mine-MGCCE —*— a-Rank EQ g -
A O . —»— RVCCE Random Dirichlet | mé /_/
aZ 1° « RMWCCE —e— Random Joint 5% 107 7 »
O qh, 10-3 ¥ N\ o— —\ —— N g 'g /o_/—/
58 R mwAr=and s .7/
Ua 10—4 ‘@’ 0.5 P4
10-5 I|'ﬁ \ \ \ \ < oo/ —A—00—0—42—00—0—42—00—0—42--00—0—-2-—00--0—2-—00—-0—2-00—0—-2—00—0—-42—90—0--~290—0—~2—
r" ® ‘A: P— 0.0 1 I I 1 I I I
107° — 0 10 20 30 40 50 60 70 80
0 5 10 15 20 25 30 35 40 JPSRO lterations

JPSRO lterations

(b) Value sum on three-item Trade Comm. The approximate CCE
MS was not sufficient to converge in this game, however all valid
CCE MSs were able to converge to the optimal value sum.

(a) CCE Gap on three-player Kuhn Poker. Several MS converge to
within numerical accuracy (data 1s clipped) of a CCE.

14

12 A

10 -

Value Sum
(under MWCCE)
(@)} (00]

JPSRO Iterations

re

(¢c) Value sum on Sheriff. The optimal maximum welfare of other
solution concepts are included to highlight the appeal of using

NFCCE.

Contents

o Rectified Nash

oDiverse PSRO

o PSRO with Behavioural Diversity
o Joint PSRO

e Pipeline PSRO

o Mixed Oracles / Opponents

o Neural Auto-curricula

Pipeline PSRO [McAleer 2020] - Algorithm

Iteration

Policy Level

0 1 2 3 4 7 8
Legend

0

I T[3 Fixed Policy
Lowest Active

T[° T[3 1_[4 Policy
Active Policy

o [=] [[[«

nO nl n2 T[3

T[O nl T[2 T[3 -'-[7

T[O nl n2 T[3 n? T[8

Fixed policies do not train anymore
and remain within the fixed
population.

Lowest active policy trains against the
meta-distribution defined by the fixed
population

Active policies train against the meta-
distribution defined by the population
of agents below them in the pipeline

Pipeline PSRO [McAleer 2020] - Results

Leduc Poker : : :
3% 100 Dimension: 60, Learning Rate: 0.1, Workers: 4

| — DCH
Fictitious Play
10° - - Naive PSRO

| = P25RO0 (Ours)
{ —— Rectified PSRO
| = Self Play
Sequential PSRO

| —

2x10°

» Pipeline PSRO reaches an approximate Nash

equilibrium far quicker than other algorithms in
Random Symmetric NFGs

100 -

Exploitability
Exploitability

= P2SRO (Ours)
Rectified PSRO
| = Naive PSRO

6x 107!

» In Leduc Poker reaches low exploitability almost

axio |0 | | 107 twice as quick than Naive PSRO - other
Y Ceepsaiion 5% b o do Fo Fo Ho A algorithms do not reach low exploitability
(a) Leduc poker

(b) Random Symmetric Normal Form Games

Figure 2: Exploitability of Algorithms on Leduc poker and Random Symmetric Normal Form Games

Name P2SRO Win Rate vs. Bot
o Barrage Stratego is a Two-Player Zero-Sum imperfect information Asmodeus %1%
game . v Celsius 70%
o Game-tree complexity of 10 Vixen 69%
» Comparison vs. All existing bots for the game Celsiusl.1 65%

All Bots Average 71 %

Contents

o Rectified Nash

o Diverse PSRO

o PSRO with Behavioural Diversity
o Joint PSRO

o Pipeline PSRO

e Mixed Oracles / Opponents

o Neural Auto-curricula

Q-Mixing [Smith et al. 2020]

=
BR(T[S’) g » Learn best-responses to different
2 policies 7’
BR(T[_li)) § X O ’ ;EJ-.L ° Tr.ansfer I<now!edge against opponent
; 5 mixture by weighting Q-values
according to current belief of
BR(T[_ZZ-)) ELL opponent’s policy

Q

00pa;10_) = Y win_;|0,0_)Q,(0na;| 7))

Current brief about opponents’ policy

Mixed Oracles [Smith et al. 2021]

» During PSRO how can we transfer experience across iterations!?
* Now maintain two populations
I, = {7, ny,...,7:,] A ={A1,4,...,4,]
°* Where A, is a learned best-response to 7, at every iteration, rather than against the meta-distribution

» We now have best-response experience against all policies in the population

» Use Q-mixing to find the new population policy

O0pa;l0_) = Y win ;0,0)00 ;| 7_)

Probability of playing opponent 7__

l

Mixed Oracles [Smith et al. 2021] - Results

200 200
175 L‘ - PSRO 175 ‘_‘ - PSRO
- Mixed-Oracles - Mixed-Oracles
150 150 o General-Sum Tragedy of the Commons style
£ 125- £ 125- game where individual interest is in conflict with
%’100- %100' the group interest
a] a » Mixed-oracles converges in half the number of
501 50 -
PSRO epoches.
25- 25- of o ° °
S) o Utilises quarter the number of simulations
0 5 10 15 20 25 30 35 40 o 1 2 3 4 5 6 7 8
PSRO Epochs Timesteps x107

10 101
- PSRO - PSRO
8 Mixed-Oracles 3 Mixed-Oracles
o Leduc Poker 5 5
» Mixed-oracles reaches similar performance in g i g
half the number of PSRO epochs. E 4 ~/V\/\\ 5
» Drastically fewer number of time steps for a ? N W\AMN"-'_ ”
comparable solution
°0 10 20 30 40 50 60 70 80 % 1 2 3 1 5 6 7 8

PSRO Epochs Timesteps x10°

Mixed Opponents [Smith et al. 2021]

PSRO %

. B h BR includes old strategy
@ @ % @ @ g . . Paper

\ @ LY
Mixed-Opponents g

!
_ 02 l « BR includes new strategy
‘ Rock
@ % &

Q:}lix

@Br 7
Opponent Opponent BR to
Policy Q-Values Strategy Opponent

Strategy

Mixed Opponents [Smith et al. 2021] - Results

- PSRO
~+ Mixed-Opponents

0O 5 10 15 20 25 30 35 40
PSRO Epochs

200

175
150+

- PSRO
—- Mixed-Opponents | | ® General-Sum Tragedy of the Commons style

game where individual interest is in conflict with
the group interest

» Mixed-oracles appears to converge in a similar
number of PSRO epoches.

o Whilst PSRO converges, mixed-opponents

3 4 5 & 5 & continually improves and nearly solves the game

e Leduc Poker

» Mixed-oracles reaches similar performance in

similar number of PSRO epochs to PSRO.

o Drastically fewer number of time steps for a

comparable solution

Timesteps x107
10 10+
- PSRO - PSRO
-+ Mixed-Opponents -+ Mixed-Opponents

SumRegret
SumRegret

0 10 20 30 40 50 60 70 80 o 1 2 3 4 5 6 7 8
PSRO Epochs Timesteps x10°

Contents

o Rectified Nash

oDiverse PSRO

o PSRO with Behavioural Diversity
o Joint PSRO

o Pipeline PSRO

o Mixed Oracles / Opponents

e Neural Auto-curricula

Discovering Multi-Agent Auto-Curricula in

Neural Auto-Curricula ring Mult- Agent At Cur

Xidong Feng* !, Oliver Slumbers*!, Yaodong Yang'!,

Ziyu Wan?, Bo Liu®, Stephen McAleer?, Ying Wen?, Jun Wang!

» L earning to learn: discover algorithm components (e.g.“who to beat” and “how to beat them™) from data.
o |s Game-Theoretic knowledge (e.g. transitivity/non-transitivity/Nash) needed? Learn purely from data?

» Can we learn the auto-curricula (i.e. the meta-solver) based on the type of game provided to the meta-
learning algorithm?

» Beneficial because RL Oracles can only approximate a best-response, and using Nash may not be the best
option as a meta-solver dependent on game structure & approximate best-responses.

* In single-agent RL, discovered RL methods have been shown to outperform human-designed TD learning.

Algorithm Algorithm properties What is meta-learned?
IDBD, SMD [30, 27] 1 O — learning rate
. o . . SGD? [1] +Ht B« optimiser
Discovering Reinforcement Learning Algorithms Meta-Gradient Reinforcement Learning with an RLZ, Meta-RL [9, 39] Mt B X recurrent network
Ob J ectlve Dlscovered Onllne MAML, RI?PTILE [11,23] tt O <« initial params
Meta-Gradient [43, 46] t O — v, A, reward
Meta-Gradient [38, 44, 40] 1 O <« auxiliary tasks, hyperparams, reward weights
Junhyuk Oh Matteo Hessel Wojciech M. Czarnecki Zhongwen Xu ML2, MetaGenRL [2, 19] +++ B < loss function
Evolved PG [16] tH++ B X loss function
Hado van Hasselt Satinder Singh David Silver Zhongwen Xu, Hado van Hasselt, Matteo Hessel Oh et al. 2020 [24] +HH+ B target vector
Junhyuk Oh, Satinder Singh, David Silver This paper + B < target
(zh hado mtthes. : th‘:'l‘:Pl;’hnd_ davidsilver}ogoogl [white box, M black box, + single lifetime, +++ multi-lifetime
DeepMind zhongwen,hado,mLLass, junuyux,baveja,davidsiiver JigoogLe . com < backward mode, — forward mode, X no meta-gradient

EJ The Best-Response Oracle

N e u ra I A u to o C u r ri C u I a F ra m ewo r I(- Algorithm component that controls the iterative expansion of the population

e Given a curriculum 7, € A|¢’| the goal becomes to solve a best-response to this distribution

t
» Goal is the following: tBR = argmax Z = M(,)
=

» Perform the optimisation in anyway desired, but this will impact the meta-gradient calculation

Game Environment G ~ P (G) — Forward Pass i>Back-prop Gradients

| > | . :t: ﬂ't' — ¢BR=m;x§nfm(¢,¢k) —
; : I | | - I N 7
MV+ | O

|SE— |SE—

¥ The Learning Objective

» What is the goal of the iterative update procedure?

* Given a curriculum 7 = fy(M7) and a population @, we want to be as close to a Nash equilibrium as
possible.
» Distance to Nash measured as the exploitability: Cxp = m;lx M(p, (rr, Pr))
X L *fmw x MLP Moon Pootn9, Global Info _..I._M“_.{ Nx1
| o R » : »i.e. How good is the best-response to the curriculum? If O, it is a Nash equilibrium
Concatenation
Nx128

M, —> P YIMB) —p Crp= M@BR (1, ©))

Optimisation through meta-gradients
B} The Meta-Game E The Meta-Solver B . E E

» Recall the learning objective of the player: Czp := max M (¢, (7, D
» Main component of population-based methods - The meta-game e i & Wrtar)

» Algorithm component that controls the auto-curricula of who to compete with

* Also recall that 7 = f,(M7), which allows us to define the meta-solver optimisation as:

* An agent is a mapping ¢ : § X A — [0,1] » General examples: Nash equilibrium, Uniform distribution, Last agent

m(¢1’ ¢2)
» The payoff for agent i vs. agent j is defined as MM(¢;, ¢)) — ﬁ » Need to parameterise the process so that we can learn it 0* = argmin, J(0), where J(0) = E¢..p() [(Exp(ﬂ, D|0, G)]
» Payoff matrix between agents in a population amenable to GT analysis - b L covork with] ‘M 011 thacn — (M
o= B erencters Omaps jp - M, & 10,1 so that 7, = ipC0e » What does the gradient boil down to then?
* The goal of these algorithms is to expand the populations ® iteratively
BR
’ V,J6) =E Mz, |0pr,1 |, 0Mry, Onp : OMr,, 0Py
] l | ENEEEED : ”' , g 0o | Giobel Inf mL ; BRI : T a¢BR 00 ony 00 o, d0
| | i SR) = MLP Mean-Pooling MLP Mean-Pooling obal Info b Nx1 T T
!MW — | My ceeHHMAAH I o M, -
1 ‘ o Nx128 s :
@, = {¢y, $,} T = 1’¢2} I B = Gradient of most interest decompm 0¢TB+P} . 0¢TB+P} ony . 0¢?+P} 0D,

m L= o 00 onr 00 odr 90

BB The Meta-Game

» Main component of population-based methods - The meta-game

m(¢19 ¢2)
* An agent is a mapping ¢ : S X A — [0,1]

» The payoff for agent i vs. agent j is defined as M(¢h;, P;)

D, = {¢1, P}
 Payoff matrix between agents in a population amenable to GT analysis

* The goal of these algorithms is to expand the populations @ iteratively

1= » 2>
(I)t = {¢19¢2} e D, = {Py, Py, ..., Pr}

 Algorithm component that controls the auto-curricula of who to compete with

» General examples: Nash equilibrium, Uniform distribution, Last agent

The Meta-Solver

* Need to parameterise the process so that we can learn it

* A network with parameters @ maps f, : M, — [0,1]" so that 7, = f,(M)

Q= (¢, ha}

NXN

Column
MLP : Mean-Pooling A

Nx64

Row
MLP Mean-Pooling

>

>

-

o

Global Info
64

\

/L MLP
B

J

i
U
Row-wise

Concatenation
Nx128

NXx1

~
Ilﬂt

The Best-Response Oracle

» Algorithm component that controls the iterative expansion of the population

» Given a curriculum 7, € A | the goal becomes to solve a best-response to this distribution

[
» Goal is the following: tBR = argmax Z M (P, Py
k=1

» Perform the optimisation in anyway desired, but this will impact the meta-gradient calculation

e P omo e
k=1

¥ The Learning Objective

» What is the goal of the iterative update procedure!

» Given a curriculum 7 = f,(M;) and a population ®; we want to be as close to a Nash equilibrium as

possible.

» Distance to Nash measured as the exploitability: Cep = mq?X WP, (mp, D))

° i.e. How good is the best-response to the curriculum? If O, it is a Nash equilibrium

WET —> Fomn Y dmee) —> Grp= MR (7. 0)

I._”T

Optimisation through meta-gradients

» Recall the learning objective of the player: Cxp := max M (¢, (ny, D))
¢

° Also recall that 7z = f,(M7), which allows us to define the meta-solver optimisation as:

0* = argmin, J(0), where J(0) = Eg.pc)|Sp(r, @0, G)|

» What does the gradient boil down to then!

_ BR _
U 10 -L. My, Jodbriy | 0Ny, Omy : Mz, 0D

apBR| 96 ony 00 0D; 0

T+1
T aBR aBRo. N

Gradient of most interest decomposes to il

00 or, 00 oD, 00

Game Environment G ~ P(G) — Forward Pass £>Back—prop Gradients

[4]

Neural Auto-Curricula Recap ol ey [oniese

» The objective is given by:

The goal of LMAC is to find an auto-curricula that after I’ best-response iterations returns a meta-
strategy and population, (7w, @), that helps minimise the exploitability, written as:

min Erp(mr(0), Pr(60)), where Erp 1= mgxi)ﬁ (p, (7w, PT)), (3)

mr = fo(Mr), &7 = {P7(6), pr1(0), ..., 3 (0) } . (4)

Based on the Player’s learning objectives in Eq. (3), we can optimise the meta-solver as follows:

6" = argmin J (@), where J(0) = Eg.pc) |Crp (7, 2|0, G) |. ®))
0

* When optimising the meta-solver 6, the type of best-response oracle matters due to back-propagation!

: awz ’ ’ a t azm ¢ ’<7z.t’ cI)t> a t azg‘n ¢ ’<7Tt’ (I)t
o one-step gradient descent oracle $BR = ¢ + (qb(;qjﬂf s ";; = <a 4,0 .) ?(; = <a¢OaCI)).
0 k b ! 0 !
= 2

: ¢ s - ; a¢t azgﬁ(d)rBRa (7, ©y)) azwz((l)zBR (7, Dy))

» N-step gradient descent oracle (via implicit gradient) a(; e e STTTe

: . AL L | t+1

)
» policy-gradient based oracle (via DICE) e e soicE_§ ﬁ (o |) 7 (150 |

s i |0 L (g, (al 1 0) 7, (1 7))

» general type of oracle (via ES)

A P)
VgJo0) = Eg ~ pG),e ~ w00 _(@WT(”T» ©r) |0 +e, G)€

O

The TorchOpt Project

» Computing meta-gradient in meta-RL is troublesome, we offer a JAX-like functional programming tool for
Py Troch.

@
@ Meta Parameter @ Network Parameter ——» Forward Pass
Li,(a,8): Inner Loss Lyy:(a,0): Outer Loss ~ ----- + Backward Pass

QOuter Loop

Outer.step

|
I
|
l
a
i i TorchOpt is a high-performance optimizer library built upon PyTorch for easy implementation of functional
i optimization and gradient-based meta-learning. It consists of two main features:
PR 0 SR30.inner Loop! i
i@ TooLin (0, 00)(Vo, Lin (a0, 61). : @ . e TorchOpt provides functional optimizer which enables JAX-like composable functional optimizer for PyTorch.
E *) nnerstep T Tnnerstep i : A With TorchOpt, one can easily conduct neural network optimization in PyTorch with functional style optimizer,
_____________________________ |
""""""""""""""""" Otffer Step similar to Optax in JAX.
Lout (o, 02) e With the desgin of functional programing, TorchOpt provides efficient, flexible, and easy-to-implement

differentiable optimizer for gradient-based meta-learning research. It largely reduces the efforts required to
implement sophisticated meta-learning algorithms.

https://github.com/metaopt/TorchOpt

Neural Auto-Curricula Results

° |s our method any good on the environments where it is trained!?

» Due to long-trajectory issues, we also focus on the approximate best-response setting

Random Game of Skills(GD)

» Performance at least as good as
baseline measures z

Exploitability

lterated Matching Pennies(RL)

o Outperforms PSRO in multiple
settings

= ! ™
© v °o

Exploitability

o
wn

6 8

4
lterations

0 2

—— Self-play

Differentiable Lotto-Log plot(GD)

Kuhn-Poker(Appr tabular V1)

0.8

0.4

0.2
0 2 4 6 8 0 12

1
Iterations

—— PSRO-Uniform

2D-RPS(GD) 2D-RPS-Implicit(GD)

—— 35

S——

25

1.0

0.5 0.5

Kuhn-Poker(PPO)

Kuhn-Poker(Appr tabular V2)

0.2

0 2 4 6 8 0 12

1
lterations

— PSRO —— PSRO-rN

Neural Auto-Curricula Results

e What is the learned auto-curricula?

» Compare agents found and their respective densities in the meta-distribution

lteration 1

lteration 1

-
o~ ’—’
>~
/
* Y
\
|
! [
|
I
l"

Ilteration 4

lteration 4

lteration 7

lteration 7

PSRO

Ours

lteration 10

x\\ N\

9

lteration 10

lteration 13

Ay x
- e
N
\ S
x. | ¥ . W\
\
| x
|

lteration 13

lteration 16

lteration 16

Neural Auto-Curricula Results

» Can the learned solver generalise over different games!?

» the most promising and striking aspect of NAC - Train on small games and generalise to large
games, e.g., train on Kukn Poker and test on Leduc Poker

— Qurs —— PSRO —— PSRO-Uniform

Leduc - Exact BR Leduc - Approximate BR AlphaStar Meta-Game GoS - Varied Dimensions

2.6

w
w

1.50

A\
NooW
u o

2.4

w
=

2.2 1.25

N
w

2.0 1.00

=N
o
o

N
o
~J
n

-
wv
pd
w
o

1.8 0.75
1.6 0.50

' 1.25
. 1.00
0.00 0.75

Exploitability

=
o

1.4 0.25

Final Exploitabilit

o
u

1.2

©
o

0 10 20 .30 40 50 0 10 20. 30 40 0 5 10_ 15 20 0 250 500' 750 .1000 1250 1500
lterations lterations Iterations Dimension

Efficient PSRO [Ming et. al .2022]

URR Game Algorithm 1: VANILLA PSRO Algorithm 2: SIMPLIFIED
meta-strategy
Input: initial restricted policy sets II" = (II7, II5) PSRO WITH URR GAMES
O2p /* can be saved via URR games «/ Input: initial restricted policy
ke 5 T T
| : § Input: empty payoff table U™ bil sets 11 . (dlti I13)
W2 | i[md] [wd] w3 wk| w3 [xE] [xZ] [x2] 2 Input: meta-strategies o; ~ UNIFORM(II?) 1 while not terminatea G0
e [e while not terminated do . for player ¢ - {1’ 2} do
E for player i € {1,2} do 3 Random initialize a best
Ll S for many episodes do LESPONSE T,
resrictec | 3 | Train best response 7; g against m_; ~ o_; (74,6, 0—i,8) = Meroe
pollcx sets | | ; SOLVEURR(7; 4, erge two
. . H',f E H,?,; U {m, 9} I) steps Into one
/* can be saved via URR games | */ 5 H_qz; - H';-" U {7Tz‘,9} for
nr Run simulations to compute missing entries in U L s
~ Compute a meta-strategy o from U Output: current meta-strategy
(a) Player 1's URR game dynamics Output: current meta-strategy o; for player i o; for player ¢

Monotonic Improvement Guarantee

Theorem 3.3 (Monotonic Policy Space Expanding). For any given epoch e and e + 1, let (7$,0°¢)

and (17, 0°t1) be Nash equilibrium of URRS and URRS™", respectively, where &, 1! € H,i-,
e+
—i

o, € Afr i and ae_ng c Af{l The utilities of w; against opponent strategies o° , and o

satisfies
ui(m§, 025) — ui(nf,0%77) > 0, (1)

e+1

where A$- indicates A(I1"*}). Especially, u;(n§,0¢;) — uy(nf, 0"

—1

strictly policy space expanding at e + 1, i.e., 7¢t1 € TI"t' \ TI™¢. (See Appendix B.1)

) > 0 indicates there is a

Summary: PSRO Incorporate Many Variants

Game Environment G ~ P(G)

M,

mz(¢hv ¢2)

—

D, = {P, Py, P5} :'

P Forward Pass

M

D, = {qbl,qb2, "'9¢T}

naive self-play
fictitious play
double oracle/PSRO
PSRO-Nash

a-PSRO
JPSRO

Training Population of RL Agents Require Powerful Al Systems

Marine (Agent)

(a) Multiagent policy networks (b) Multiagent Q networks

BiCNet, deep MARL methods

Optimizer
1p100 GPU

Compute Gradients

= Proximal Policy Optimization
with Adam

« Batches of 4096 obser

= BPTT over 16 observations

Population-based + Rapid training system

I -2 GPUs, 1-2 days 128,000 CPUs, 100 GPUs, 180 years of plays per day

amen
e —
wers
—
5 am
—
< Ao
aen
—
e

=
= P
B s
s

Progression of Nash
of AlphaStar League

Populating-based Training
Training for single agent costs 14 days, 16 TPUs/Agent,
200 years of real-time play.

e N »- 4
- \k e 3 (\3/] rammerne BBWEY

LeagueMgr

HyperMgr

GameMgr

Saver

Outcome

Task

M; copies

ModelPool

NN param

Mg copies

/ﬂN param %k M, copies

M, copies

Actor

Env

Agt

Trajectories

Learner

ReplayMem

DataServer

Act

Obs

M, copies

InfServer)

NN param

Populating-based Competitive Self-play + Policy distillation
35,000 CPUs, 320 GPUs, begin to converge after 336 hours

Training Population of RL Agents Require Powerful Al Systems

» Distributed RL systems has made substantial progress nowadays.

¢ A rule-of-thumb is that;

A3C

Paramet rs Gradl nts Observati Paramet rs Observ tion:

Parameter > armer

Observat \ Parame

IMPALA - Single Learner IMPALA - Multiple Learners

https://cloud.tencent.com/developer/article/| | 19569

Batched A2C

Actor0 =
Actor1 B
Actor 2 =
Actor 3 7

Environment step |

|
I =ln

B8

Forward pass . Backward pass

|

IMPALA

Actor O

Actor 1

Actor 2 =
Actor3 | | Tl
Actor 4 | S0
Actor 5 | | |

Actor 6

Actor 7

Learner

 SEED RL implements a highly scalable IMPALA that uses batched inference and

optimisation on a single accelerators to maximise e compute effuency and throughput.

+ Both training and inference are on the GPU
+ Actors only run the environments

+Split env step (actor) and inference step (model) m

+ Employ RPCs between actor and learner

1. Observation
J 2. Action =
ent J %

(b) SEED architecture, see

detailed replay architecture in Figure

Actor
Environment
Actor
Environmen t
Actor
Environmen t
Actor
Environment

-
Batching layer Learner

Model

Store

Training Population of RL Agents Require Powerful Al Systems

» Distributed RL systems has made substantial progress nowadays.

+ RAY is an ecosystem that help build distribution applications.

I ib O
5 ¥ SEAG
Domain-specific libraries i‘une b,OP O =
O
[for each subsystem }> raysgd
|
v ¥ v 1 ¥
Featurization Streaming Hy$3:||i>:;am Training Simulation l S,: :’dl:lg

Framework for
distributed Python (and R AY
other languages...)
| |

Il I

I 1

+ The implementation of RLIib uses RAY for RL applications.

+ Developer s Postprocessor loss)

in TF / PyTorch / etc.

Neural network Python function

class rllib.PolicyGraph

[4

Tensor ops in
TF / Pytorch

RLIlib abstractions

rllib.PolicyEvaluator

policy

rllib.PolicyOptimizer

exchange / replay
samples, gradients,

ﬂlleOllCYGraph weights to optimize

Ray actor

replica |

replica

replica |

replica

OpenAl Multi-Agent / Policy Offline
Gym Hierarchical Serving Data
Custom Algorithms RLIib Algorithms

J \

J \

— (1) Application Support

— (2) Abstractions for RL

— (3) Distributed Execution

PB-MARL Poses New Requirements for Al Systems

+ Support for distributed PB-MARL is limited.

Framework Single-Agent Multi-Agent Population Management
RLIib v v X
SeedRL v X X
Sample-Factory v v X
MALI1b v v v

Ym, Agent
== = e T P Action a;
Training - Serving !
I Policy .1
I Policy :_yﬂ Policy : State s
1 Improvement | I Evaluation (Obs.)

Reward 741

i

Environment

I
" Slmulatlon ,

IOXO'IE t m
1 © 4 '

)
tm Agent
—— - o ————==== Action a;
| Training ! policy I Serving :
! Policy TR Policy I State St
I Improvement | I Evaluation | o (Obs.)
X | Reward 7¢41
Trajectory so, (E,rl), (8¢,7¢)
m, Agent
BEmee e = Action a¢
I Tralr_\lng 1 Policy Serv_lng I State
: Policy i | Policy I St
1 Improvement | 1 Evaluation | (Obs.)
Reward 741
Trajectory s, (s1,71) (st,7¢)

Remaining Challenges:

|. Game evaluation needs additional

many computational power

2. We don’t know how many
computing resources needed in
advance. Population can grow.

Evaluate model performance Y

Actors produce
trajectories for
Learners

Observations

Inference Servers
produce actions

based on observation

Actor

Environment

T Actions

Inference Server

:

EF(R\ELET-{I88 PSRO, diversity happens here

Game Evaluation Opponent Selector

Trajectories Learner

Read model

:
Read model T lWrite model

Population Storage

3. Mirco-services + gRPC are not
optimal design. Need to think on
the data-flow level.

4. Effectiveness on cooperative
games.

l Spawn/Terminate Actor/Learners

Learners train the
model based on
trajectories

Population Model
Store stores the
parameters of

opponent neural
networks

PB-MARL Poses New Requirements for Al Systems

» PB-MARL requires more thinkings on the efficient implementations

* computational demands for RL For Population-based MARL
* Policy optimization
* Policy inference
* Environment simulation & rollout » Large-scale rollout & training framework
These 3 subtasks can be easily implemented, * Support heterogenous tasks

e.g., Actor-Learner Architecture * High throughput distributed frameworks
* Maximize utilization of different hardware

e Extra demands for MARL
* Rollout with joint policies

» Exponentially increased rollouts for training * Support population-based training

. ?Zrc])crjne\fiacl:taetcljor?\ana ement of policy pool and " Sell-play /ieagur B
D E Halid * meta-game analysis that based on

population .
« More complex task- & data-flow game/graph theory and representation

* Meta-game -> extra policy interactions learning.
e * Others: imitation learning/transfer
There is not a good solution to these learning/model based/heuristic

requirements.

MALIib: Designed for PB-MARL

For

ulti-Agent Reinforcement Learning

Actor-Evaluator-Learner Architecture: Decouple the Task-/Data-flow

parameter/graients

Parameter @
Server

T T T ——
Task
Request

OfflineDataset

data Server @

parameters/gradients

Task
Request

Dispatching

compute resource dynamically.

(MA)RL

D

Task Dispatching Task
_________ Define

MALib: Centralized Task Dispatching Model
(CTD)

* Modular design, easy to implement and reuse.
* Centralized control: generate tasks and allocate

* Semi-passively executing submodule

Task dispatching /
Remote control

Data flow

Task Dependency

In MALIib, we focus on training paradigms
and then build algorithms upon them, which
Improve the reusing rate.

* Independent Learning: DQN,PPO

* Centralized Learning: MADDPG, QMIX
* Async Learning IMPALA

* Sync Learning: -~

Centralized

B~

share information
Learner

Independent
_policy

— population <s—

own information

Async/Sync _[Evaluator]—4
L

Actor r,)
[Rollout Worker]_]J N [Rollout Worker]_]J

Table 4: Implemented algorithms in MALib.

Algorithm Training Interface Execution Mode PB-MARL Support
DQN [42] Independent Async/Sync PSRO/FSP/SP
Gorilla [25] Independent Async PSRO/FSP/SP
A2C [45] Independent Sync PSRO/FSP/SP
A3C [26] Independent Async PSRO/FSP/SP
SAC [49] Independent Async/Sync PSRO/FSP/SP
DDPG [50] Independent Async/Sync PSRO/FSP/SP
PPO [43] Independent Sync PSRO/FSP/SP
APPO Independent Async PSRO/FSP/SP
MADDPG [16] Centralized Async/Sync PBT
QMIX [17] Centralized Async/Sync PBT
MAAC [46] Centralized Async/Sync PBT

https://malib.io/

MARLIib: the MARL Extension for RLIib

MARLLPb

Support Task Need Global

Algorithm Mode State Action Learning Mode Type
IQL* Mixed No Discrete Indep.endent Off,
Learning Policy
PG Mixed No Both Independent on
Learning Policy
IOL IPG IA2C IDDPG ITRPO IPPO VDN OMIX FACMAC VDA2C e | Mived . oo, Independent on
Learning Policy
VDPPO COMA MADDPG MAA2C MAPPO MATRPO HAA2C R o
DDPG Mixed No Continuous n epfen en .
HATRPO HAPPO Learning Policy
TRPO Mixed No Both Indepfendent On.
Learning Policy
PPO Mixed No Both Indepfandent On.
Learning Policy
Independent VO'.UQ CentrOllzed COMA Mixed Yes Both Centralized Critic ICD)cr:Iicy
Learning Decomposition Critic o
MADDPG Mixed Yes Continuous Centralized Critic .
Policy
i . . On
. MAA2C* Mixed Yes Both Centralized Critic Policy
Multi-agent Loss Function o
MATRPO* Mixed Yes Both Centralized Critic Pcr:licy
: : Model
PO'.ICY Mopplng . MAPPO Mixed Yes Both Centralized Critic S:Iicy
Architecture
DOtO postprocessing HATRPO Cooperative Yes Both Centralized Critic S(:Iicy
Real World Problem: MetaDrive, Flatland, Google Research Football, etc on
HAPPO Cooperative Yes Both Centralized Critic .
Policy
MA-RLLlib Env Interface MA-RLLlib Algorithm N | cooparative . veerete VAU ot
Decomposition Policy
. . . Value Off
RQy / RLlI b QMIX Cooperative Yes Discrete Decomposition Policy
. . Value Off
FACMAC Cooperative Yes Continuous . .
Decomposition Policy
VDAC Cooperative Yes Both Value . On'
Decomposition Policy
VDPPO* Cooperative Yes Both value on

Decomposition Policy

https://github.com/Replicable-MARL/MARLlib

