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Intelligence is learning from mistakes!

“… if a machine is expected to be infallible, it cannot also be intelligent. 
There are several mathematical theorems which say almost exactly that. 
But these theorems say nothing about how much intelligence may be 

displayed if a machine makes no pretence at infallibility…”

                                                                                   — Alan Turing, 1947



Multi-Agent Intelligence: learning from mistakes from multiple agents’ interactions

∥∇f(x)∥2 = 0

Normal machine learning problems: Multi-agent Learning problems:

agents learn to reach some 
dynamic equilibrium

Rock Paper

Scissor

Loss landscape keeps fixed Loss landscape changes with opponents’ actions



Multi-Agent Reinforcement Learning

Modelled by a Stochastic Game 

 denotes the state space,
 is the joint-action space ,

 is the reward function for the i-th agent,
 is the transition function based on the joint action,  

 is the distribution of the initial state,  is a discount factor.
Special case:  single-agent MDP, normal-form game
Dec-POMDP: assume state is not directly observed, but agents have same reward function.

Each agent tries to maximise its expected long-term reward:

                            

                           

(𝒮, 𝒜{1,…,n}, ℛ{1,…,n}, 𝒯, 𝒫0, γ)
𝒮
𝓐 𝒜1 × … × 𝒜n

ℛi = ℛi(s, ai, a−i)
𝒯 : 𝒮 × 𝓐 × 𝒮 → [0,1]
𝒫0 γ

n = 1 → |𝒮 | = 1 →

Vi,π(s) =
∞

∑
t=0

γtEπ,𝒫 {Ri,t |s0 = s, π}, π = [π1, …, πN]

Qi,π(s, a) = Ri(s, a) + γEs′￼∼p [Vi,π (s′￼)]

𝒜1

𝒜2

… …

A population 
of  agents

Environment

Two-player 
Markov game



Value-based method:

The sense of optimality changes, now it depends on other agents !   

                                                          
                                                    

Fully-cooperative game: agents share the same reward function
                                    

                                    

Fully-competitive game: sum of agents' reward is zero
                                    

                                    

Assuming agents share the either the same or completely opposite interest is a strong assumption.

πi,t(s, ⋅ ) = solvei{Q⋅,t(st, ⋅ )}

evali{Q⋅,t(st+1, ⋅ )} = max
a

Qi,t(st+1, a)

solvei{Q⋅,t(st, ⋅ )} = arg max
ai

( max
a−i

Qi,t(st, ai, a−i))

evali{Q⋅,t(st+1, ⋅ )} = max
πi

min
a−i

Eπi[Qi,t(st, ai, a−i)]
solvei{Q⋅,t(st, ⋅ )} = arg max

πi

min
a−i

Eπi[Qi,t(st, ai, a−i)]

Multi-Agent Reinforcement Learning

fully
cooperative

geneal-sum 
games

fully
competitive

Qi,t+1 (sk, πt) = Qi,t (st, πt) + α[Ri,t+1 + γ ⋅ evali{Q⋅,t(st+1, ⋅ )} − Qi,t (st, πt)]



Mixed strategy Nash equilibrium always exists in finite player finite action games.

For continuous utility games, the strategy set needs to be compact

Note that  can be replaced by  because deviation is at most a pure strategy !

In Markov game, the solution concept is Markov Perfect Equilibrium. 

μ′￼i ∈ ΔSi
a ∈ Si

Nash Equilibrium

 

Two-player 
Markov game



Nash Equilibrium to MARL

Value-based method:

Nash-Q Learning [Hu. et al 2003] — Using Nash Equilibrium as the optima to guide agents’ policies

1. Solve the Nash Equilibrium for the current stage game

2. Improve the estimation of the Q-function by the Nash value function.  

                                                 

Nash-Q algorithm [Junling 2003] computes Nash for the normal-form game at each state 

Nash-Q operator  is a contraction mapping.  

πi,t(s, ⋅ ) = solvei {Q⋅,t (st, ⋅ )}
Qi,t+1 (sk, πt) = Qi,t (st, πt) + α[Ri,t+1 + γ ⋅ evali {Q⋅,t (st+1, ⋅ )} − Qi,t (st, πt)]

solvei {Q ⋅⋅t (s, ⋅ )} = Nashi {Q⋅,t(st, ⋅ )}

evali {Q⋅,t(s, ⋅ )} = Vi(s, Nash {Q⋅,t(st, ⋅ )})

ℋNashQ(s, a) = Es′￼[R(s, a) + γVNash (s′￼)]



Complexity of Computing Nash Equilibrium in Normal-Form Games

Solving Nash Equilibrium is very challenging ! 

The solution concept of Nash comes from game theory 
but it is not their main interest to find solutions.

Complexity of solving two-player Nash is PPAD-Hard 
(intractable unless P=NP).

How to scale up multi-agent solution is open-question. 

Approximate solution is still under development. 

         

Equilibrium selection is problematic, how to coordinate 
agents to agree on Nash during training is unknown.

Nash equilibrium assumes perfect rationality, but can be 
unrealistic in the real world. 

Ri (ai, a−i) ≥ Ri (a′￼i, a−i) − ϵ
ϵ = .75 → .50 → .38 → .37 → .3393 [Tsaknakis 2008]

More complexity results of solving Nash [Shoham 
2007, sec 4][Conitzer 2002]

Two-player general-sum normal-form game: 
Compute NE  PPAD-Hard
Count number of NE  #P-Hard
Check uniqueness of NE  NP-Hard
Guaranteed payoff for one player  NP-Hard
Guaranteed sum of agents payoffs  NP-Hard
Check action inclusion / exclusion in NE  NP-Hard

Stochastic game: 
Check pure-strategy NE existence   PSPACE-Hard
Best response for arbitrary strategy  Not Turing-
computable, even can not be implemented by a Turing PC.
It holds for two-player symmetrical game with finite time 
length. 

→
→

→
→
→

→

→
→recently 1/3 !



Solving Nash Equilibrium in normal-form games is PPAD-hard; we expect solving 
Nash in stochastic games can only be harder ! But it is not.

  

Meaning computing Nash in SGs is unlikely to be NP-hard unless NP coNP.

PPAD problems can always have exp-time algorithms, can we have P-time solutions ?

Short answer is we don’t know yet. Similar to we don’t know if P=NP.  But highly likely NO.

≠

Computing Nash Equilibrium in Stochastic Games

Theorem: Computing Markov Perfect Equilibrium in N-Player SGs is PPAD-complete. 



Summary of Complexity Results

https://arxiv.org/abs/2011.00583

https://arxiv.org/abs/2011.00583


fully
competitive

MARL in Zero-Sum Games

Jan 2016 Dec 2017

technique of single-agent 
decision-making is mature

AlphaGO Series

July 2018

Capture-the-flag (DeepMind)

techniques of multi-agent decision-making is getting mature !

Jan 2019 Apr 2019 July 2019 Sep 2019

AlphaStar (DeepMind)

Dota2 (OpenAI)

Pluribus Poker (FAIR)

Hide and Seek (OpenAI)

Great advantages have been made in 2019!

fully
cooperative

geneal-sum 
games



A General Solver to Two-Player Zero-Sum Games

Black-box multi-agent 
game engine

Input: a joint strategy ( )π1, . . . , πN

Output: the reward ( )R1, . . . , RN

Low-exploitability
strategy 

( )π1,* . . . , πN,*

input output

Our algorithm: 

Bri(π−i) = arg max
πi

Eai∼πi,a−i∼π−i[Ri(ai, a−i)]
Exploitability(π) =

2

∑
i=1

Ri(Bri(π−i), π−i) − Ri(π)



Two Mainstreams of Multi-Agent Learning algorithms 

Population-based methods:

Fictitious play, double oracle, PSRO series, … 

Regard the opponents fixed and seek for best 
responses.

Easily and nicely integrated with RL methods (e.g., 
NFSP, PSRO)

Work effectively in potential and zero-sum games, 
but limited in genera-sum games.

Average policy have convergence guarantee but 
generally no last-iteration convergence 

No-regret methods

MWU, Follow the Regularised/Perturbed leader, 
CFR and all kinds of CFR variants, MCTS, …

Work in a self-play settings, no best-response step 
but a no-regret step.

Often requires to know the model (the game tree, 
utility function/strategies of opponents, etc)

A portal to the arsenal of online learning tools

Have nice convergence guarantee to Nash zero-
sum games, and CE/CCE in general-sum games.



Le Cong Dinh

University of Southampton



Summary of Online Double Oracle Results

The best achievable regret in bandit setting is , see [Audibert, Bubeck 2010, JMLR]𝒪( T |A | )



von Neumann theorem:  Two-player Nash can be computed in P-time through linear programmes (LP).

The  is the Nash value
proof:  due to definition of ,  due to being the LP solution. 
corollary: all Nash value are the same (saddle point is unique in bimatrix game). 

The (p, q) is the Nash equilibrium:
proof: suppose the player plays  instead of 

, , thus no incentives to deviate.  

Sion’s minimax theorem generalises to quasi-convex/concave functions                                      . 

v*
v ≤ v* v* v ≥ v*

x, y p, q

xT Aq =
N

∑
i=1

xi(Aq)i ≤ max
i∈[N]

(Aq)i = vc = v* pT Ay =
M

∑
j=1

(pT A)j
yj ≥ min

j∈[M]
(pT A)j

= vr = v*

Nash Equilibrium in Two-Player Zero-Sum Games

Prime problem

max
v∈ℝ

v

 s.t. p⊤A ⪰ v ⋅ 1
p ⪰ 0 and p⊤1 = 1

min
v∈ℝ

v

 s.t. q⊤A⊤ ⪯ v ⋅ 1
q ⪰ 0 and q⊤1 = 1

Dual problem Minimax theorem

max
p

min
q

p⊤Aq
= min

q
max

p
p⊤Aq

/

row player maximises the worst situation column player’s view zero-duality gap for convex problems

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y)



When and Why we need Population-based Methods ?

Black-box multi-agent 
game engine

Input: a joint strategy ( )π1, . . . , πN

Output: the reward ( )R1, . . . , RN

Regret based methods: Poker Type

Population based methods: StarCraft type

When planning is feasible (game tree is easily 
accessible), existing techniques can solve the 
games really well.

Perfect-information games: 
MCTS, alpha-beta search, AlphaGO series 
(AlphaZero, MuZero, etc)

Imperfect-information:
CFR series (DeepCFR, Libratus/Pluribus, 
Deepstack), XFP/NFSP series

When planning is not feasible. StarCraft has  
choices per time step vs. the whole tree of chess 

 (Texas holdem ,  GO ). 
Enumerating all policies’ actions at each state 
and then playing a best response is infeasible.

Solution: training a population of RL agents, 
treat each RL agent as one “pure strategy” and 
solve the game at a meta level where an agent is 
a RL model of a player, and we need a population 
of those agents (due to non-transitivity).

1026

1050 1080 10170



A player in zero-sum games usually have multiple strategies (Rock, Paper, Scissor).

One strategy / policy corresponds to one “agent”         .  A player        is represented 
by a population of agents (due to non-transitivity). 

We now need to study the meta-game: the game of a game, the problem problem.

We need to build that population of agents such that the player is unexploitable.

Player = Agent A Player has a a population of Agents 

Life up the problem to the meta level (i.e., the policy level)

meta-game 
analysis



Formulation of Population Based Learning in Zero-Sum Games

Let’s formulate the self-play process.
Suppose two agents, agent 1 adopts policy parameterised by , and agent 2 adopts policy .  
They can be considered as two neural networks. 
Define a functional-form game (FFG) [Balduzzi 2019] to be represented by a function

 represents the game rule, it is anti-symmetrical. 
 means agent 1 wins over agent 2, the higher  the better for agent 1.

with ,  we can have the best response defined by:

Oracle: a god tells us how to beat the enemy, it can be implemented by a RL algorithm, for example 
PPO + PBT as we have mentioned early, or other optimiser such as evolutionary algorithm.  

v ∈ ℝd w ∈ ℝd

ϕ
ϕ > 0 ϕ(v, w)

ϕw( ∙ ) := ϕ( ∙ , w)

ϕ : V × W → ℝ

v′￼ := Br(w) = Oracle(v, ϕw( ⋅ ))  s.t.  ϕw (v′￼) > ϕw(v) + ϵ

RL model RL model



Question: Can we use it as a general framework to solve any games?

It depends. In most of the games, it does not work. 

Naive Self-play Will Not Work

PPO + Self-play = Panacea ?

(π1, π2) → (π1, π2,* = Br(π1)) → (π1,* = Br(π2,*), π2,*)

self-plays



It is because of Non-Transitivity

Rock-Paper-Scissor game:

Disc game:

Naive Self-play Will Not Work

ϕ(v, w) = v⊤ ⋅ (0, −1
1, 0 ) ⋅ w = v1w2 − v2w1

[
0 1 −1

−1 0 1
1 −1 0]

∫W
ϕ(v, w) ⋅ dw = 0, ∀v ∈ W



Game Decomposition

Every FFG can be decomposed into two parts [Balduzzi 2019]

Let  be a compact set and  prescribe the flow from  to , then this is 
a natural result after applying combinatorial hodge theory [Jiang 2011]. 

We can write any games  as summation of two orthogonal components

Example on Rock-Paper-Scissor

v, w ∈ W ϕ(v, w) v w

ϕ

FFG = Transitive game ⊕ Non-transitive game

grad( f )(v, w) := f(v) − f(w) div(ϕ)(v) := ∫
W

ϕ(v, w) ⋅ dw curl(ϕ)(u, v, w) := ϕ(u, v) + ϕ(v, w) − ϕ(u, w)

ϕ = grad ∘ div(ϕ)
curl(⋅)=0

+ (ϕ − grad ∘ div(ϕ))
div(⋅)=0

Transitive game Non-transitive game

= + +
Transitive game Non-transitive game



Every FFG can be decomposed into two parts

Transitive Game: the rules of winning are transitive across different players. 

Example: Elo rating (段位) offers rating scores  that assume transitivity. 

Larger score means you are likely to win over players with lower scores.

Elo score is widely used in GO and Chess.

This explains why you don’t want to play with rookies, when  ,   

f( ⋅ )

f(vt) ≫ f(w)

vt beats vt−1, vt+1 beats vt → vt+1 beats vt−1

ϕ(v, w) = softmax(f(v) − f(w))

∇vϕ (vt, w) ≈ 0

What is Transitivity ?

FFG = Transitive game ⊕ Non-transitivegame



Every FFG can be decomposed into two parts

Non-transitive Game: the rules of winning are not-transitive across players. 

Mutual dominance across different types of modules in a game. This is commonly 
observed in modern MOBA games. 

For this types of game, self-play is not helpful at all because transitivity assumption 
does not hold.  Self-play could lead to cyclic loops forever. 

vt beats vt−1, vt+1 beats vt ↛ vt+1 beats vt−1

What is Non-Transitivity ?

FFG = Transitive game ⊕ Non-transitivegame



Let us define the evaluation matrix for a population of  agents to beN

Visualisation of Transitive and Non-Transitive Games

[Balduzzi 2019]

ϕ(vi, wj)

A𝔓 := {ϕ(wi, wj) : (wi, wj) ∈ 𝔓 × 𝔓} =: ϕ(𝔓 ⊗ 𝔓)



The Spinning Top Hypothesis

[Czarnecki 2020]

Real-world games are mixtures of both transitive and 
in-transitive components, e.g., Go, DOTA, StarCraft II. 

Though winning is often harder than losing a game, 
finding a strategy that always loses is also challenging. 

Players who regularly practice start to beat less skilled 
players, this corresponds to the transitive dynamics.  

At certain level (the red part), players will start to find 
many different strategy styles. Despite not providing a 
universal advantage against all opponents, players will 
counter each other within the same transitive group. 
This provide direct information of improvement.

As players get stronger to the highest level, seeing many 
strategy styles, the outcome relies mostly on skill and 
less on one particular game styles (以不变应万变). 



Measuring the Non-Transitivity

A theoretical lower bound of the size of non-transitivity [Czarnecki 2020]
n-bit communicative game 

Results on GO and MOBA games: 

bit: how many action one can take before the outcome of the game is predetermined

n-bit game = there exists at least a non-transitive circle of size 2n

Not tra
ctab

le!



Measuring the Non-Transitivity

A practical way of measurement through meta-game analysis
Computing n-bit communicative game needs full tree traversing, thus intractable
Deciding a graph has a path of length higher than k is NP-hard
One needs to approximate.

Method I, count the number of RPS cycles.

when k=3, we can compute by constructing , then

Method II, at each transitivity level, we can measure the Nash Clustering

Ai,j = 1 ⟺ ϕi, j > 0

Ni+1 = supp(Nash(P ∣ Π\ ∪j≤i Nj))
strategies that at the 

higher level of transitivity

N0

diag(A3)



Measuring the Non-Transitivity in Chess

Real-world data set from human players on Chess

We study one billion human player records from Lichess platform

Human Chess players presents the spinning-top pattern, which verifies the hypothesis

https://arxiv.org/pdf/2110.11737.pdf

RPS cycles



Example on training AlphaStar: 

 

[Vinyals 2019, Table 3]

Non-Transitivity Harms Training !

Example on training Soccer AI: Example on training AlphaGO: 

[Silver 2016, table 9][Karol 2020, table 2]

http://www.drive-ml.com


 Dealing With Non-Transitivity Helps Save Training Time

[Le Ceong Dinh 2021]
[AlphaStar Blog]

Most strategies we get from 
training are in fact redundant !

http://www.drive-ml.com


Topological structure at the policy space affects the efficiency of training algorithm. 

for example, there is a reason why we need diversity in the policy space. 

on chess, large population size (thus more diversity) will have a phase change in the strength ! 

Understanding Non-Transitivity Helps Develop Algorithms !

Large population 
size helps strengthen 
the performance !



Understanding Non-Transitivity Helps Develop Efficient Algorithms !

StarCraft micro-management
BiCNet, deep MARL methods

1-2 GPUs, 1-2 days 

2017.1

2019.1

StarCraft full game (AlphaStar)
Populating-based Training

Training for single agent costs 14 days, 16 TPUs/Agent, 
200 years of real-time play.

2019.4

Dota 2 full game (OpenAI Five)
Population-based + Rapid training system

128,000 CPUs, 100 GPUs, 180 years of plays per day
2020.11

王者荣耀 (绝悟)

Populating-based Competitive Self-play + Policy distillation
35,000 CPUs, 320 GPUs, begin to converge after 336 hours

ReplayMem

DataServer

ML copies

MG copies

MI copies

Env

Agt

MA copies

InfServer

MP copies

ModelPool

HyperMgr

GameMgr

Saver

Trajectories

ObsAct

NN param

Outcome Task

TaskNN param

NN param NN param

Actor Learner

LeagueMgr

Figure 1: Diagram of the framework. The rounded rectangle denotes a primary module or a secondary
module (if any), e.g., Actor is a primary module that embeds the secondary modules Env and Agt. Borrowing
notations of [48], we use a rectangle with a number on top-right to denote how many copies/replicas there
are for a module. In this convention, we can read that there are Mp ModelPools, MA ⇥ML ⇥MG Actors,
etc. The method-call (or message-passing) is represented by arrows. The contact of the arrow indicates “how
the messages are packed”. For example, the “Trajectories” arrow starts from the “MA copies” rectangle and
ends at the “Learner” rounded rectangle, which indicates that the MA Actors altogether send trajectories to
a single one Learner. See the text for detailed explanations.
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Understanding Non-Transitivity Helps Develop Efficient Algorithms !

[Czarnecki 2020]

self-play

PSRO

Fictitious play



Maintain a belief over the historical actions that the opponent has played, and the 
learning agent then takes the best response to this empirical average distribution.  

It guarantees to converge, in terms of the Nash value, in two-player zero-sum games, 
potential games and  games , and, the average policy converge to the Nash strategy. 

Examples:

2 × 2

Solutions: Fictitious Play [Brown 1951]

at,*
i ∈ BRi(pt

−i =
1
t

t−1

∑
τ=0

ℐ {aτ
−i = a, a ∈ 𝔸})

(1/2, 1/2) (1/2, 1/2)∞

pt+1
i = (1 −

1
t )pt

i +
1
t

at,*
i ,  for all i



It releases the FP by allowing approximate best response and perturbed average 
strategy updates, while maintaining the same convergence guarantee if conditions met.   

 ,  meets

Recovers normal Fictitious Play when .

Why important: it allows us to use a broad class of best responses such as RL 
algorithms, and also, the policy exploration in e.g. soft-Q learning. Also, GWFP makes FP 
no-regret by introducing the perturbation term . 

t → ∞ αt → 0,ϵt → 0, , {Mt}

αt = 1/t, ϵt = 0,Mt = 0

M

Generalised Weakened Fictitious Play [Leslie 2006]

pt+1
i = (1 − αt+1)pt

i + αt+1(Brϵ
i (p−i)+Mt+1

i ),  for all i

Brϵ
i (p−i) = {pi : Ri(pi, p−i) ≥ Ri(Bri(p−i), p−i) − ϵ}

lim
t→∞

sup
k

{
k−1

∑
i=t

αi+1Mi+1  s.t. 
k−1

∑
i=t

αi+1 ≤ T} = 0∑
t=1

αt = ∞



Double Oracle best responds to the opponent’s Nash equilibrium at each iteration.   

To solve the game before seeing all pure strategies (not all of them are in Nash), much 
faster than LP, but In the worst-case scenario, it recovers to solve the original game.

Solutions: Double Oracle [McMahan 2003]

iteration 0: restricted game R vs R

iteration 1:


 solve Nash of restricted game      
(1, 0, 0) , (1, 0, 0)

 unrestricted  = P, P


iteration 2:

 solve Nash of restricted games


      (0, 1, 0) , (0, 1, 0)

 unrestricted  = S, S


iteration 3:

solve Nash of restricted game 


      (1/3, 1/3, 1/3) , (1/3, 1/3, 1/3)

iteration 4: no new response, END 


output (1/3, 1/3, 1/3)

Br1, Br2

Br1, Br2



It guarantees to converge to Nash equilibrium in two-player zero-sum games, and 
coarse correlated equilibrium in multi-player general-sum games.

Convergence proof: 


DO finally recovers to solve the whole game

Correctness proof:


 DO stops at the j-th sub-game, we can prove no new best responses can be added

Double Oracle [McMahan 2003]

∀p, V(p, qj) ≥ v ⇒ ∀p, max
q

V(p, q) ≥ v

∀q, V(pj, q) ≤ v ⇒ max
q

V(pj, q) ≤ v
⇒ ∀p, max

q
V(pj, q) ≤ maxq(p, q)

 must be the minimax optimal,
 vice versa

pj
qj



A generalisation of double oracle methods on meta-games, 
with the best responser is implemented through deep RL 
algorithms.

A meta-game is  where  is the 

set of policies for each agent and  is the 
reward values for each agent given a joint strategy profile.  

 is distribution over , a.k.a meta-solver

PSRO generalises all previous methods by varying .

independent learning: 

self-play: 

fictitious play: 

PSRO:  or 

(Π, U, n) Π = (Π1, . . . , Πn)
U : Π → ℝn

σ−i (Π0
1, . . . , ΠT

1)

σ−i

σ−i = (0,...,0,0,1)
σ−i = (0,...,0,1,0)

σ−i = (1/T,1/T, . . . ,1/T,0)
σ−i = Nash(ΠT−1, U) RD(ΠT−1, U)

Policy Space Response Oracle = Double Oracle with RL Agent

expand the 
payoff matrix

solve the new 
meta game

compute the best response

select opponent policies

augment strategy pool



Contents
Rectified Nash

Diverse PSRO

PSRO with Behavioural Diversity

Joint PSRO

Pipeline PSRO

Mixed Oracles / Opponents

Neural Auto-curricula 



Meta-Game Structure [Czarnecki et al. 2020]

Interesting games display a particular spinning-top structure

Diverse game-styles are prevalent 
and perform similarly to each-other, 
i.e. we are in the non-transitive layer

Diversity disappears and skill 
becomes the dominant factor, I.e. 
the game becomes fully transitive

The big question is how 
does one move efficiently 

between the layers? 



Why is Diversity Important?

Diversity matters because the more diverse the population pool, the less exploitable. Promoting diversity 
can help you break out of in-transitive regions faster.

In real-world applications, you want policies to cover different skill-sets. This is a realistic need from 
autonomous driving and gaming AI applications. 



Gamescapes

A crucial component in characterising a population is that of the 
empirical gamescape

Measure all ways agents can and are observed to interact with each-
other

Schur Decomposition of 
certain payoff matrices paints 
an intuitive picture 

Games show an obvious 
gamescape structure

Obvious linear/transitive structure Obvious cyclic/non-transitive structure 



PSRO-rN [Balduzzi et al. 2019] - Algorithm
key changes: only selecting opponents that you 
already beat (i.e. rectifying the Nash)

vt+1 ← oracle(vt , ∑
wi∈𝔓t

pt[i] ⋅ ⌊ϕwi
( ∙ )⌋+)

Intuition: improving ones strengths allows 
for exploration of the strategy space

Effective diversity quantifies how the best agents in a 
population exploit each other - Dominant Agent = 0 Diversity



PSRO-rN [Balduzzi et al. 2019] - Results

Diversity helps in exploring the strategy space more 
efficiently and effectively



Contents
Rectified Nash

Diverse PSRO

PSRO with Behavioural Diversity

Joint PSRO

Pipeline PSRO

Mixed Oracles / Opponents

Neural Auto-curricula 



Diverse-PSRO

1.Go back to first principles: 

Determinantal Point Process [Alex Kulesza 2013] : a point process parameterised by a distance kernel. 

diversity should be defined in terms of orthogonality. 

w(i), i ∈ Y

DPP(𝓛) := ℙℒ(Y = Y) ∝ det(𝓛Y) = Vol2({wi}i∈Y)



Diverse-PSRO

1.Go back to first principles: 

Policy diversity can be measured by orthogonality of pay-off vectors, i.e., . 

The expected cardinality of the DPP is the diversity metric.

ℒ𝕊 = MM⊤

diversity should be defined in terms of orthogonality. 

 Diversity (𝕊) = 𝔼Y∼ℙℒ
[ |Y | ] = Tr (I − (ℒ𝕊 + I)−1)



Diverse-PSRO

Based on the diversity metric, we can design diversity-aware PSRO

Diverse PSRO

Diverse -PSRO ( -Rank as meta-solver)

Importantly, we prove that

α α

 Diversity (𝕊) = 𝔼Y∼ℙℒ
[ |Y | ] = Tr (I − (ℒ𝕊 + I)−1)

 Gamescape (𝕊) ⊊  Gamescape  (𝕊 ∪ {Sθ})

O1 (π2) = arg max
θ∈ℝd ∑

S2∈𝕊2

π2 (S2) ⋅ ϕ (Sθ, S2) + τ ⋅  Diversity  (𝕊1 ∪ {Sθ})

𝒪 (π2) = argmaxπ∈ΔSi Tr (I − (ℒ𝕊i
t∪{π} + I)−1)



Diverse-PSRO

the most efficient population-based zero-sum 
game solver so far!
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Behavioural Diversity + Response Diversity

Rectified PSRO & Diverse PSRO introduced the notion of response diversity (diversity of rewards)

We want both the outcomes and the policies that lead to those outcomes to be diverse

Diversity should include both response diversity, and behavioural diversity (diversity of the policies)



Behavioural Diversity: Assume that we use the Nash distribution as our meta-solver, , we want a 

new policy  that has a different occupancy measure  from :

One can train a neural network  to fit , and then assign an intrinsic reward by encouraging the 

new policy to visit state-action pairs with a large prediction error (not covered by the existing occupancy 
measure). 

πE = (πi, πE−i
)

πM+1 ρπ(s) = (1 − γ)
∞

∑
t=0

γtP (st = s ∣ π) πE

f ̂θ (s, a) ∼ ρπE

Behavioural Diversity + Response Diversity

Divocc (πM+1
i ) = Df(ρπM+1

i ,πE−i
∥ρπi,πE−i

)

max Rint(s, a) = f ̂θ(s, a) − fθ(s, a)
2



Response Diversity: we want the new policy  to expand the convex hull of the existing meta-game  by 
introducing a new payoff vector                                          that

 the above equation has no closed form, but we can optimise a lower bound

However, how can we know the payoff  before actually training the policy? 

πM+1 AM

aM+1

Behavioural Diversity + Response Diversity

Divrew  (πM+1
i ) = min

1⊤β = 1
β ≥ 0

A⊤
M β − aM+1

2

2

aM+1 := [ϕi(πM+1
i , π j

−i)]
N
j=1

Divrew  (πM+1
i ) ≥ F(πM+1

i ) =
σ2

min(A)(1 − 1⊤ (A⊤)† an+1)
2

M
+ (I − A⊤ (A⊤)†) an+1

2

∂F (π′￼i(θ))
∂θ

= (
∂ϕi (π′￼i(θ), π1

−i)
∂θ

, …,
∂ϕi (π′￼i(θ), πM

−i)
∂θ ) ∂F

∂aM+1

the answer: we can train against  based on the weights suggested by  !πM
−i ∂F/∂aM+1



Performance when considering both Diversity terms is very impressive

Behavioural Diversity + Response Diversity

arg max
π′￼i

𝔼s,a∼ρπ′￼i,πE−i
[r(s, a)] + λ1 Divocc (π′￼i) + λ2 Divrew (π′￼i)
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Joint PSRO [Marris et al. 2021]
Developed for n-player general-sum extensive-form games, beyond two-player zero-sum

Maximum Gini Correlated Equilibrium as meta-solver

Maximised for a perfectly uniform mixed-
strategy

Correlated equilibrium is a joint mixed 
strategy where no player gains from a 
unilateral deviation



Joint PSRO [Marris et al. 2021] - Results
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Pipeline PSRO [McAleer 2020] - Algorithm

Fixed policies do not train anymore 
and remain within the fixed 
population.

Lowest active policy trains against the 
meta-distribution defined by the fixed 
population

Active policies train against the meta-
distribution defined by the population 
of agents below them in the pipeline



Pipeline PSRO [McAleer 2020] - Results

Pipeline PSRO reaches an approximate Nash 
equilibrium far quicker than other algorithms in 
Random Symmetric NFGs 

In Leduc Poker reaches low exploitability almost 
twice as quick than Naive PSRO - other 
algorithms do not reach low exploitability

Barrage Stratego is a Two-Player Zero-Sum imperfect information 
game
Game-tree complexity of 
Comparison vs.  All existing bots for the game

1050
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Q-Mixing [Smith et al. 2020] 

Learn best-responses to different 
policies 
Transfer knowledge against opponent 
mixture by weighting Q-values 
according to current belief of 
opponent’s policy

πt
−i

Qi(oi, ai |σ−i) = ∑
π−i

ψi(π−i |oi, σ−i)Qπi
(oi, ai |π−i)

Current brief about opponents’ policy



Mixed Oracles [Smith et al. 2021] 
During PSRO how can we transfer experience across iterations?

Now maintain two populations

Where  is a learned best-response to  at every iteration, rather than against the meta-distribution

We now have best-response experience against all policies in the population

Use Q-mixing to find the new population policy

λt πt

Qi(oi, ai |σ−i) = ∑
π−i

ψi(π−i |oi, σ−i)Qi(oi, ai |π−i)

Πt = {π1, π2, . . . , πt} Λt = {λ1, λ2, . . . , λt}

Probability of playing opponent π−i



Mixed Oracles [Smith et al. 2021] - Results

General-Sum Tragedy of the Commons style 
game where individual interest is in conflict with 
the group interest
Mixed-oracles converges in half the number of 
PSRO epochs.
Utilises quarter the number of simulations

Leduc Poker
Mixed-oracles reaches similar performance in 
half the number of PSRO epochs.
Drastically fewer number of time steps for a 
comparable solution



Mixed Opponents [Smith et al. 2021] 

Opponent 
Strategy

BR to 
Opponent 
Strategy

Opponent 
Policy Q-Values

BR includes old strategy 
Paper

BR includes new strategy 
Rock



Mixed Opponents [Smith et al. 2021] - Results

General-Sum Tragedy of the Commons style 
game where individual interest is in conflict with 
the group interest
Mixed-oracles appears to converge in a similar 
number of PSRO epochs.
Whilst PSRO converges, mixed-opponents 
continually improves and nearly solves the game

Leduc Poker
Mixed-oracles reaches similar performance in 
similar number of PSRO epochs to PSRO.
Drastically fewer number of time steps for a 
comparable solution
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Learning to learn: discover algorithm components (e.g. “who to beat” and “how to beat them”) from data.

Is Game-Theoretic knowledge (e.g. transitivity/non-transitivity/Nash) needed? Learn purely from data?

Can we learn the auto-curricula (i.e. the meta-solver) based on the type of game provided to the meta-
learning algorithm?

Beneficial because RL Oracles can only approximate a best-response, and using Nash may not be the best 
option as a meta-solver dependent on game structure & approximate best-responses. 

In single-agent RL, discovered RL methods have been shown to outperform human-designed TD learning. 

Neural Auto-Curricula



Neural Auto-Curricula Framework



      The Meta-Game

Main component of population-based methods - The meta-game

An agent is a mapping 

The payoff for agent i vs.  agent j is defined as 

Payoff matrix between agents in a population amenable to GT analysis

The goal of these algorithms is to expand the populations  iteratively 

ϕ : S × A → [0,1]

𝔐(ϕi, ϕj)

Φ

𝔐(ϕ1, ϕ2)
||

Φ2 = {ϕ1, ϕ2}

Φt = {ϕ1, ϕ2}

𝗠 𝗠t+1

Φt+1 = {ϕ1, ϕ2, ϕ3}

…
ΦT = {ϕ1, ϕ2, …, ϕT}

𝗠T

1



      The Meta-Solver

Algorithm component that controls the auto-curricula of who to compete with

General examples: Nash equilibrium, Uniform distribution, Last agent

Need to parameterise the process so that we can learn it

A network with parameters  maps  so that θ fθ : 𝗠t → [0,1]t πt = fθ(𝗠t)

N×N
MLP

Column
Mean-Pooling

Row-wise 
Concatenation

N×128

MLP
N×64

Global Info
64

N×1
MLP

Row
Mean-Pooling

Φt = {ϕ1, ϕ2}

𝗠t 𝗠t

πt

2



Algorithm component that controls the iterative expansion of the population

Given a curriculum  the goal becomes to solve a best-response to this distribution

Goal is the following:

Perform the optimisation in anyway desired, but this will impact the meta-gradient calculation

πt ∈ Δ|Φt|

      The Best-Response Oracle

ϕBR
t = argmaxϕ

t

∑
k=1

πk
t 𝔐(ϕ, ϕk)

ϕBR = max
ϕ

t

∑
k=1

πk
t 𝔐(ϕ, ϕk)𝗠t

πt ϕBR

ϕBR

𝗠t

3



      The Learning Objective

What is the goal of the iterative update procedure?

Given a curriculum  and a population  we want to be as close to a Nash equilibrium as 
possible.

Distance to Nash measured as the exploitability:

i.e. How good is the best-response to the curriculum? If 0, it is a Nash equilibrium

πT = fθ(𝗠T) ΦT

𝔈𝔵𝔭 := max
ϕ

𝔐(ϕ, ⟨πT, ΦT⟩)

ϕBR = max
ϕ

T

∑
k=1

πk
T𝔐(ϕ, ϕk)𝗠T

πT

𝔈𝔵𝔭 = 𝔐(ϕBR, ⟨πT, ΦT⟩)

4



     Optimisation through meta-gradients

Recall the learning objective of the player:

Also recall that , which allows us to define the meta-solver optimisation as:

What does the gradient boil down to then?

πT = fθ(𝗠T)

𝔈𝔵𝔭 := max
ϕ

𝔐(ϕ, ⟨πT, ΦT⟩)

θ* = argminθ J(θ), where J(θ) = 𝔼G∼P(G)[𝔈𝔵𝔭(π, Φ |θ, G)]

∇θJ(θ) = 𝔼G[ ∂𝔐T+1

∂ϕBR
T+1

∂ϕBR
T+1

∂θ
+

∂𝔐T+1

∂πT

∂πT

∂θ
+

∂𝔐T+1

∂ΦT

∂ΦT

∂θ ]

Gradient of most interest decomposes to 
∂ϕBR

T+1

∂θ
=

∂ϕBR
T+1

∂πT

∂πT

∂θ
+

∂ϕBR
T+1

∂ΦT

∂ΦT

∂θ

5



Neural Auto-Curricula Recap

The objective is given by:

When optimising the meta-solver , the type of best-response oracle matters due to back-propagation!

 one-step gradient descent oracle

 N-step gradient descent oracle (via implicit gradient)

 policy-gradient based oracle (via DICE)

 general type of oracle (via ES)

θ

ϕ1 = ϕ0 + α
∂𝒥DICE

∂ϕ0
,  where 𝒥DICE =

H−1

∑
k=0

k

∏
k′￼=0

πϕ1 (a1
k′￼∣ s1

k′￼) πϕ2 (a2
k′￼∣ s2

k′￼)
⊥ (πϕ1 (a1

k′￼∣ s1
k′￼) πϕ2 (a2

k′￼∣ s2
k′￼))

r1
k

∂ϕBR
t+1

∂Φt
= −

∂2𝔐(ϕBR
t+1 , ⟨πt, Φt⟩)

∂ϕBR
t+1 ∂ϕBR

t+1
T

−1

∂2𝔐(ϕBR
t+1 , ⟨πt, Φt⟩)

∂ϕBR
t+1 ∂Φt

ϕBR
t+1 = ϕ0 + α

∂𝔐(ϕ0, ⟨πt, Φt⟩)
∂ϕ0

,
∂ϕBR

t+1

∂πt
= α

∂2𝔐 (ϕ0, ⟨πt, Φt⟩)
∂ϕ0∂πt

,
∂ϕBR

t+1

∂Φt
= α

∂2𝔐 (ϕ0, ⟨πt, Φt⟩)
∂ϕ0∂Φt

.

∇θ
̂Jσ(θ) = 𝔼G ∼ P(G), ϵ ∼ 𝒩(0,I) [ 1

σ (𝔈𝔵𝔭T(πT, ΦT) θ + ϵ, G)ϵ]



The TorchOpt Project

Computing meta-gradient in meta-RL is troublesome, we offer a JAX-like functional programming tool for 
PyTroch.

https://github.com/metaopt/TorchOpt



Is our method any good on the environments where it is trained?

Due to long-trajectory issues, we also focus on the approximate best-response setting

Performance at least as good as 
baseline measures

Outperforms PSRO in multiple 
settings

Neural Auto-Curricula Results



What is the learned auto-curricula?

Compare agents found and their respective densities in the meta-distribution

Neural Auto-Curricula Results



Can the learned solver generalise over different games?

the most promising and striking aspect of NAC - Train on small games and generalise to large 
games, e.g., train on Kukn Poker and test on Leduc Poker

Neural Auto-Curricula Results



Efficient PSRO [Ming et. al .2022]

Merge two 
steps into one

Monotonic Improvement Guarantee



Summary: PSRO Incorporate Many Variants

Game Environment G ∼ P(G)

… "#$(πT, ΦT(θ))%t

&(ϕ1, ϕ2)
||

%t

(Neural) Meta-Solver  fθ(%t) π ϕBR

N×N
MLP

Column
Mean-Pooling

Row-wise 
Concatenation

N×128

MLP
N×64

Global Info
64

N×1
MLP

Row
Mean-Pooling

πt+1

%t+1

Forward Pass

ΦT = {ϕ1, ϕ2, …, ϕT}

%T
Φt = {ϕ1, ϕ2, ϕ3}

Best Response Oracle

ϕBR = max
ϕ

t−1

∑
k=0

πk&(ϕ, ϕk)
ϕBR

Φ2 = {ϕ1, ϕ2}

ϕBR

Elo rating 
Correlated equilibrium 

Nash equilibrium 
Replicator dynamics 

-Rank/ -Rankα αα

naive self-play 
fictitious play 

double oracle/PSRO 
PSRO-Nash 

-PSRO 
JPSRO
α



Training Population of RL Agents Require Powerful AI Systems

StarCraft micro-management
BiCNet, deep MARL methods

1-2 GPUs, 1-2 days 

2017.1

2019.1

StarCraft full game (AlphaStar)
Populating-based Training

Training for single agent costs 14 days, 16 TPUs/Agent, 
200 years of real-time play.

2019.4

Dota 2 full game (OpenAI Five)
Population-based + Rapid training system

128,000 CPUs, 100 GPUs, 180 years of plays per day
2020.11

王者荣耀 (绝悟)

Populating-based Competitive Self-play + Policy distillation
35,000 CPUs, 320 GPUs, begin to converge after 336 hours

ReplayMem

DataServer

ML copies

MG copies

MI copies

Env

Agt

MA copies

InfServer

MP copies

ModelPool

HyperMgr

GameMgr

Saver

Trajectories

ObsAct

NN param

Outcome Task

TaskNN param

NN param NN param

Actor Learner

LeagueMgr

Figure 1: Diagram of the framework. The rounded rectangle denotes a primary module or a secondary
module (if any), e.g., Actor is a primary module that embeds the secondary modules Env and Agt. Borrowing
notations of [48], we use a rectangle with a number on top-right to denote how many copies/replicas there
are for a module. In this convention, we can read that there are Mp ModelPools, MA ⇥ML ⇥MG Actors,
etc. The method-call (or message-passing) is represented by arrows. The contact of the arrow indicates “how
the messages are packed”. For example, the “Trajectories” arrow starts from the “MA copies” rectangle and
ends at the “Learner” rounded rectangle, which indicates that the MA Actors altogether send trajectories to
a single one Learner. See the text for detailed explanations.
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Training Population of RL Agents Require Powerful AI Systems

Distributed RL systems has made substantial progress nowadays.

A rule-of-thumb is that: decoupling learning and rollout enables great speedups.

SEED RL implements a highly scalable IMPALA that uses batched inference and 
optimisation on a single accelerators to maximise compute efficiency and throughput.

Both training and inference are on the GPU
Actors only run the environments
Split env step (actor) and inference step (model)
Employ RPCs between actor and learner

https://cloud.tencent.com/developer/article/1119569



Training Population of RL Agents Require Powerful AI Systems

Distributed RL systems has made substantial progress nowadays.

RAY is an ecosystem that help build distribution applications. 

The implementation of RLlib uses RAY for RL applications.



PB-MARL requires more thinkings on the efficient implementations

Support for distributed PB-MARL is limited.

PB-MARL Poses New Requirements for AI Systems

2 Related Work91

A fundamental challenge in MARL is that the agents tend to overfit other players [21], making92

it hard for the algorithms to achieve robust performance. To solve this problem, interacting with93

heterogeneous agents or diverse policies of co-players is unavoidable. PB-MARL is a feasible94

approach to solve this problem, and prior works include population-based training [22, 23], self-95

play [8, 18] and meta-game [10, 24].96

Another difficulty is the data processing, the same as all DRL tasks. For deep reinforcement learning,97

high throughput allows algorithms to achieve a faster convergence rate and high data efficiency.98

Table 1: Comparison between MALib and existing dis-
tributed reinforcement learning frameworks from three di-
mensions.

Framework Single-Agent Multi-Agent Population Management

RLlib X X ⇥
SeedRL X ⇥ ⇥

Sample-Factory X X ⇥
MALib X X X

There are many distributed reinforce-99

ment learning algorithms/frameworks100

proposed in recent years [25, 26, 27].101

Among them, a standard implemen-102

tation is to design training and roll-103

out workers in fully distributed con-104

trol, i.e., the Actor-Learner model.105

Also, some of them try to mitigate the106

communication loads between CPU107

and GPU [28] to improve the single-108

machine performance. Despite the impressive successes in distributed RL, most of them require users109

to do extra parallel programming to fit their custom requirements. RLlib [11] solved this problem by110

building a DRL framework on the top of Ray [29], work in a logically centralized control manner.111

Furthermore, the solution to MARL tasks among these frameworks is to model the MARL tasks as112

single-agent tasks, which decreases the computing efficiency in more general MARL settings since it113

requires heterogeneous agent/policy interaction in the training process.114

Apart from the efforts in DRL, there are also tremendous works that integrate distributed computing115

techniques into deep learning architectures. Frameworks like PyTorch [30] and Horovod [31]116

implemented their distributed training logic over MPI [32]. General distributed tools like Ray [29]117

and Fiber [33] provide a universal API for building distributed applications, which relieve users from118

parallel programming such as MPI and OpenMP [34].119

There are also some works that focus on MARL implementation and abstraction [35, 36], but most of120

them are too narrow to fit general MARL tasks, focusing on a specific domain [37]. As we claimed121

in the aforementioned content, the distributed computing support for MARL is necessary to the wider122

access of this exciting area.123

To meet the distributed computing requirements of PB-MARL, we built our MALib on top of Ray124

and provided an efficient training framework. Table 1 presents the comparison between MALib125

and exiting distributed reinforcement learning framework from three dimensions, i.e., single-agent126

RL support, multi-agent RL support and population management. Despite some of them support127

multi-agent RL algorithms, they are essentially independent learning, or require users’ extra efforts128

to implement algorithms in other training paradigms. Furthermore, a key dimension for PB-MARL is129

the population management, i.e., maintaining a policy pool for each agent, support policy expansion,130

update policy distribution in auto-curriculum learning, etc. MALib considered these requirements131

and gives corresponding implementations.132

3 Parallel Programming Abstractions for PB-MARL133

In this section, we will give an introduction to our framework from three components: the Centralized134

Task Dispatching model, the Actor-Evaluator-Learner model and the abstractions of MARL training135

paradigms, as shown in Figure 2. With these key implementations, we tense MALib serve for PB-136

MARL in auto-curriculum learning task schedule, execution in high performance and implementation137

with high code reuse.138

3.1 Centralized Task Dispatching Model139

As introduced in Section 2, parallelizations for RL in previous work can be roughly classified into the140

Fully Distributed Control (FDC) [38, 12, 13] and the Hierarchical Parallel Task (HPT) model [11]141

3



PB-MARL requires more thinkings on the efficient implementations

PB-MARL Poses New Requirements for AI Systems



MALib: https://malib.io 

MALib: Designed for PB-MARL

A Algorithm Library510

We have integrated a set of popular (MA)RL algorithms. Table 4 gives an overview of these algorithms511

and tags them according to 1) training interface introduced in Section 3.3, 2) execution mode, and 3)512

the supported PB-MARL algorithms. The training interfaces could be Independent or Centralized513

which are corresponding to independent learning and centralized learning respectively. The execution514

mode could be Async (asynchronous) or Sync (synchronous). In the initial implementation, we515

provided three PB-MARL algorithms support, they are Policy Space Response Oracle [10] (PSRO),516

Fictitious Self-play [18] (FSP), Self-play [5] (SP) and Population-based Training [48] (PBT).517

Table 4: Implemented algorithms in MALib.
Algorithm Training Interface Execution Mode PB-MARL Support

DQN [42] Independent Async/Sync PSRO/FSP/SP
Gorilla [25] Independent Async PSRO/FSP/SP
A2C [45] Independent Sync PSRO/FSP/SP
A3C [26] Independent Async PSRO/FSP/SP
SAC [49] Independent Async/Sync PSRO/FSP/SP
DDPG [50] Independent Async/Sync PSRO/FSP/SP
PPO [43] Independent Sync PSRO/FSP/SP
APPO Independent Async PSRO/FSP/SP

MADDPG [16] Centralized Async/Sync PBT
QMIX [17] Centralized Async/Sync PBT
MAAC [46] Centralized Async/Sync PBT

B Additional Results518

B.1 MADDPG for MPE519

We implemented MADDPG in MALib with the same configuration as RLlib, i.e., both of the actor520

and critic uses three layers of 64-units fully-connect network. The experiments were conducted in521

seven scenarios introduced in PettingZoo [47], with different worker settings (ranges from 1 to 128),522

as listed below.523

Figure 10: Comparisons of MADDPG in simple adversary under different rollout worker settings.

Simple Adversary. There is 1 adversary, 2 good agents and 2 landmarks in this scenario. All agents524

can observe landmarks and other agents. One landmark is tagged as the ‘target landmark’. Good525

agents are rewarded based on the distance to the target landmark, i.e., closer to the target landmark526
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OfflineDataset 
Server

Coordinator Server LearnerActor

Parameter  
Server

Environment
Batched Data

EvaluatorTask Flow 
Handler

Task 
Dispatching

data

Task 
Request

Task 
Request

Task 
Dispatching

data

parameters/gradientsparameter /graients

AgentInter faces  Policy

Figure 2: Overview of the MALib architecture. The Coordinator Server schedules the learning tasks;
workers like Actor and Learner work in parallel and data dependencies are decoupled by Parameter
and OfflineDataset servers. Actor is responsible for rollout/simulation tasks with k environments
each, and Leaner is responsible for the optimization of a policy pool. The collected experiences are
processed before being sent to the OfflineDataset server. After Learner/Actor completes tasks, it will
send a task request to Coordinator server for evaluation or promote the generation of next learning
stage.

fixed training task flow and policy interaction manners . Though these frameworks have abstractions142

for RL tasks, the extraordinary types of MARL training schema limit their performance, so users have143

to make extra efforts for customization. Furthermore, the PB-MARL algorithms like PSRO [10] and144

AlpahRank [24] require mutation in policy combination and policy space expansion in auto-curricula,145

which are ignored in previous frameworks.146

A B

D

C

(MA)RL 
Task 

Define
Task Dispatching

Task dispatching / 
Remote control
Data flow

Task Dependency

A B

D

C

(MA)RL 
Task 

DefineA B

C D

(a) (b) (c)

Figure 3: We abstract parallel processes as A⇠D in this figure. Processes perform autonomous
control in (a) Fully Distributed Control Model (FDC) and centralized control in (b) the Hierarchical
Parallel Task Model (HPT) and (c) our Centralized Task Dispatching Model (CTD). D represents
the centralized control process which is responsible for task dispatching. The working processes
(A⇠C) in CTD execute in semi-passive manner, performing higher parallelism than the fully-passive
execution in HPT.

We propose the Centralized Task Dispatching (CTD) model to meet these requirements in PB-147

MARL. Figure 3 presents the comparisons between previous parallel control model and our CTD148

model. This figure borrows the flowcharts from RLlib to better explain our design in parallel task149

control. The same as RLlib, we implemented the CTD model on top of Ray [29], which allows150

Python-implemented tasks to be naturally distributed over a large cluster.151

The CTD model considers both of the advantages from FDC and HPT models. Specifically, the152

CTD has a centralized controller D to update the description of underlying policy combinations153

iteratively and generate new learning tasks, then dispatches them to working processes (A, B and154

C). The working processes in CTD work independently but do not coordinate with each other like in155

FTD. Furthermore, the working processes also work in a semi-passive manner, i.e., they will send156

task requests to D after completing tasks, which differs from the HPT model where the working157

process is fully passive. In fact, the semi-passive execution can be highly performant since the158

working processes will not handle the centralized controller all the time, so that D can work in highly159

parallelism to process more tasks to make sure the system run in high efficiency, especially for Python,160

which has a global interpreter lock. In our implementation, we modeled D as the Coordinator Server,161

and working processes A, B and C could be Actors, Learners and decoupled data servers.162
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MARLlib: https://github.com/Replicable-MARL/MARLlib 

MARLlib: the MARL Extension for RLlib

https://github.com/Replicable-MARL/MARLlib
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